Ejemplo n.º 1
0
    def _test_grasp(self):
        """Simple tests for grasping. Don't forget to process depth images.

        Do this independently of any rollout ...
        """
        print("\nNow in `test_grasp` to check grasping net...")
        self.position_head()
        time.sleep(3)

        c_img = self.cam.read_color_data()
        d_img = self.cam.read_depth_data()
        if np.isnan(np.sum(d_img)):
            cv2.patchNaNs(d_img, 0.0)
        d_img = depth_to_net_dim(d_img, robot='HSR')
        pred = self.g_detector.predict(np.copy(d_img))
        img = self.dp.draw_prediction(d_img, pred)

        print("prediction: {}".format(pred))
        caption = 'G Predicted: {} (ESC to abort, other key to proceed)'.format(
            pred)
        cv2.imshow(caption, img)
        key = cv2.waitKey(0)
        if key in ESC_KEYS:
            print("Pressed ESC key. Terminating program...")
            sys.exit()
Ejemplo n.º 2
0
    def _test_success(self):
        """Simple tests for success net. Don't forget to process depth images.

        Should be done after a grasp test since I don't re-position...  Note: we
        have access to `self.sn` but that isn't the actual net which has a
        `predict`, but it's a wrapper (explained above), but we can access the
        true network via `self.sn.sdect` and from there call `predict`.
        """
        print("\nNow in `test_success` to check success net...")
        time.sleep(3)
        c_img = self.cam.read_color_data()
        d_img = self.cam.read_depth_data()
        if np.isnan(np.sum(d_img)):
            cv2.patchNaNs(d_img, 0.0)
        d_img = depth_to_net_dim(d_img, robot='HSR')
        result = self.sn.sdect.predict(np.copy(d_img))
        result = np.squeeze(result)

        print("s-net pred: {} (if [0]<[1] failure, else success...)".format(
            result))
        caption = 'S Predicted: {} (ESC to abort, other key to proceed)'.format(
            result)
        cv2.imshow(caption, d_img)
        key = cv2.waitKey(0)
        if key in ESC_KEYS:
            print("Pressed ESC key. Terminating program...")
            sys.exit()
Ejemplo n.º 3
0
    def save_image(self, c_img, d_img, success_class=None):
        """Save images. Don't forget to process depth images.

        For now I'm using a tuned cutoff like 1400, at least to _visualize_.
        NOTE: since the cutoff for turning depth images into black may change,
        it would be better to save the original d_img in a dictionary. Don't use
        cv2.imwrite() as I know from experience that it won't work as desired.
        """
        rc = str(self.r_count).zfill(3)
        f_rc_grasp = 'frame_{}_{}.png'.format(rc,
                                              str(self.grasp_count).zfill(2))
        f_rc_success = 'frame_{}_{}_class_{}.png'.format(
            rc,
            str(self.success_count).zfill(2), success_class)
        if np.isnan(np.sum(d_img)):
            cv2.patchNaNs(d_img, 0.0)
        d_img = depth_to_net_dim(d_img, cutoff=1400)  # for visualization only

        if self.side == "BOTTOM":
            if self.grasp:
                pth1 = join(FAST_PATH, 'b_grasp', 'rgb_' + f_rc_grasp)
                pth2 = join(FAST_PATH, 'b_grasp', 'depth_' + f_rc_grasp)
            else:
                pth1 = join(FAST_PATH, 'b_success', 'rgb_' + f_rc_success)
                pth2 = join(FAST_PATH, 'b_success', 'depth_' + f_rc_success)
        else:
            if self.grasp:
                pth1 = join(FAST_PATH, 't_grasp', 'rgb_' + f_rc_grasp)
                pth2 = join(FAST_PATH, 't_grasp', 'depth_' + f_rc_grasp)
            else:
                pth1 = join(FAST_PATH, 't_success', 'rgb_' + f_rc_success)
                pth2 = join(FAST_PATH, 't_success', 'depth_' + f_rc_success)
        cv2.imwrite(pth1, c_img)
        cv2.imwrite(pth2, d_img)
Ejemplo n.º 4
0
def save_imgs(RES, pref):
    """I'm thinking we want to check the grasp img w/the subsequent success img.
    """
    diffs = []
    ssims = []

    for ridx, res in enumerate(RES):
        fidx = 0
        with open(res, 'r') as f:
            data = pickle.load(f)
        num_grasp = int(len(data) / 2.0)
        print(res, num_grasp)
        previous_grasp_img = None

        for item in data:
            if 'type' not in item:
                continue
            dimg = item['d_img']
            if np.isnan(np.sum(dimg)):
                cv2.patchNaNs(dimg, 0.0)
            dimg = depth_to_net_dim(dimg, robot='HSR')

            # Record current grasp img so we can compare w/next success net img.
            which_net = item['type'].lower()
            if which_net == 'grasp':
                previous_grasp_img = dimg
            else:
                diff = np.linalg.norm(previous_grasp_img - dimg)
                diffs.append(diff)
                gray1 = previous_grasp_img[:, :, 0]
                gray2 = dimg[:, :, 0]
                assert gray1.shape == gray2.shape == (480, 640)

                # we can optinally return other stuff
                # http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.compare_ssim
                #(score, difference) = compare_ssim(gray1, gray2)
                score = compare_ssim(gray1, gray2)
                ssims.append(score)

            # Save image, put L2 in success net img name
            side = item['side'].lower()
            fname = '{}_roll_{}_side_{}_idx_{}_{}.png'.format(
                pref, ridx, side, fidx, which_net)
            fname = join(TEST_HEAD, fname)
            if which_net == 'success':
                fname = fname.replace('.png',
                                      '_{:.3f}_{:.3f}.png'.format(diff, score))
                fidx += 1
            cv2.imwrite(fname, dimg)
    return diffs, ssims
Ejemplo n.º 5
0
def nan_to_num(x, copy=True, nan=0.0):
    if copy:
        out = Mat(x.shape, dtype=x.dtype, UMat=x.UMat)
    else:
        out = x
    if CV_[out.dtype.name] == cv.CV_32F:
        cv.patchNaNs(out._, nan)
    elif CV_[out.dtype.name] == cv.CV_64F:
        mat = out.n
        np.nan_to_num(mat, copy=False, nan=nan)
        if out.UMat:
            del out.u
            del out._
            out.u = cv.UMat(mat)
            out._ = out.u
    return out
Ejemplo n.º 6
0
def buildPyramidMask(pyramidDepth, minDepth, maxDepth, pyramidNormal):
    pyramidMask = []
    for i in range(len(pyramidDepth)):
        levelDepth = pyramidDepth[i]
        levelDepth = cv.patchNaNs(levelDepth, 0)
        minMask = levelDepth > minDepth
        maxMask = levelDepth < maxDepth
        levelMask = np.logical_and(minMask, maxMask)

        levelNormal = pyramidNormal[i]
        validNormalMask = levelNormal == levelNormal
        #channelMask_0, channelMask_1, channelMask_2 = cv.split(validNormalMask)
        channelMask_0 = validNormalMask[:, :, 0]
        channelMask_1 = validNormalMask[:, :, 1]
        channelMask_2 = validNormalMask[:, :, 2]
        channelMask_01 = np.logical_and(channelMask_0, channelMask_1)
        validNormalMask = np.logical_and(channelMask_01, channelMask_2)
        levelMask = np.logical_and(levelMask, validNormalMask)

        pyramidMask.append(levelMask)
    return pyramidMask
Ejemplo n.º 7
0
    def bed_make(self):
        """Runs the pipeline for deployment, testing out bed-making.
        """
        # Get the starting image (from USB webcam). Try a second as well.
        cap = cv2.VideoCapture(0)
        frame = None
        while frame is None:
            ret, frame = cap.read()
            cv2.waitKey(50)
        self.image_start = frame
        cv2.imwrite('image_start.png', self.image_start)

        _, frame = cap.read()
        self.image_start2 = frame
        cv2.imwrite('image_start2.png', self.image_start2)

        cap.release()
        print(
            "NOTE! Recorded `image_start` for coverage evaluation. Was it set up?"
        )

        def get_pose(data_all):
            # See `find_pick_region_labeler` in `p_pi/bed_making/gripper.py`.
            # It's because from the web labeler, we get a bunch of objects.
            # So we have to compute the pose (x,y) from it.
            res = data_all['objects'][0]
            x_min = float(res['box'][0])
            y_min = float(res['box'][1])
            x_max = float(res['box'][2])
            y_max = float(res['box'][3])
            x = (x_max - x_min) / 2.0 + x_min
            y = (y_max - y_min) / 2.0 + y_min
            return (x, y)

        args = self.args
        use_d = BED_CFG.GRASP_CONFIG.USE_DEPTH
        self.get_new_grasp = True
        self.new_grasp = True
        self.rollout_stats = []  # What we actually save for analysis later

        # Add to self.rollout_stats at the end for more timing info
        self.g_time_stats = []  # for _execution_ of a grasp
        self.move_time_stats = []  # for moving to the other side

        while True:
            c_img = self.cam.read_color_data()
            d_img = self.cam.read_depth_data()

            if (not c_img.all() == None and not d_img.all() == None):
                if self.new_grasp:
                    self.position_head()
                else:
                    self.new_grasp = True
                time.sleep(3)

                c_img = self.cam.read_color_data()
                d_img = self.cam.read_depth_data()
                d_img_raw = np.copy(d_img)  # Needed for determining grasp pose

                # --------------------------------------------------------------
                # Process depth images! Helps network, human, and (presumably) analytic.
                # Obviously human can see the c_img as well ... hard to compare fairly.
                # --------------------------------------------------------------
                if use_d:
                    if np.isnan(np.sum(d_img)):
                        cv2.patchNaNs(d_img, 0.0)
                    d_img = depth_to_net_dim(d_img, robot='HSR')
                    policy_input = np.copy(d_img)
                else:
                    policy_input = np.copy(c_img)

                # --------------------------------------------------------------
                # Run grasp detector to get data=(x,y) point for target, record stats.
                # Note that the web labeler returns a dictionary like this:
                # {'objects': [{'box': (155, 187, 165, 194), 'class': 0}], 'num_labels': 1}
                # but we really want just the 2D grasping point. So use `get_pose()`.
                # Also, for the analytic one, we'll pick the highest point ourselves.
                # --------------------------------------------------------------
                sgraspt = time.time()
                if args.g_type == 'network':
                    data = self.g_detector.predict(policy_input)
                elif args.g_type == 'analytic':
                    data_all = self.wl.label_image(policy_input)
                    data = get_pose(data_all)
                elif args.g_type == 'human':
                    data_all = self.wl.label_image(policy_input)
                    data = get_pose(data_all)
                egraspt = time.time()

                g_predict_t = egraspt - sgraspt
                print("Grasp predict time: {:.2f}".format(g_predict_t))
                self.record_stats(c_img, d_img_raw, data, self.side,
                                  g_predict_t, 'grasp')

                # For safety, we can check image and abort as needed before execution.
                if use_d:
                    img = self.dp.draw_prediction(d_img, data)
                else:
                    img = self.dp.draw_prediction(c_img, data)
                caption = 'G Predicted: {} (ESC to abort, other key to proceed)'.format(
                    data)
                call_wait_key(cv2.imshow(caption, img))

                # --------------------------------------------------------------
                # Broadcast grasp pose, execute the grasp, check for success.
                # We'll use the `find_pick_region_net` since the `data` is the
                # (x,y) pose, and not `find_pick_region_labeler`.
                # --------------------------------------------------------------
                self.gripper.find_pick_region_net(
                    pose=data,
                    c_img=c_img,
                    d_img=d_img_raw,
                    count=self.grasp_count,
                    side=self.side,
                    apply_offset=self.apply_offset)
                pick_found, bed_pick = self.check_card_found()

                if self.side == "BOTTOM":
                    self.whole_body.move_to_go()
                    self.tt.move_to_pose(self.omni_base, 'lower_start')
                    tic = time.time()
                    self.gripper.execute_grasp(bed_pick, self.whole_body,
                                               'head_down')
                    toc = time.time()
                else:
                    self.whole_body.move_to_go()
                    self.tt.move_to_pose(self.omni_base, 'top_mid')
                    tic = time.time()
                    self.gripper.execute_grasp(bed_pick, self.whole_body,
                                               'head_up')
                    toc = time.time()
                self.g_time_stats.append(toc - tic)
                self.check_success_state(policy_input)
    datum = pickle.load(open(fname, 'rb'))
    print("On {}, len {}".format(fname, len(datum)))
    print("keys: {}".format(datum.keys()))
    print("datum['class']: {} (_their_ format, 1=success)".format(
        datum['class']))

    assert 'c_img' in datum and 'd_img' in datum \
        and 'class' in datum and 'type' in datum
    assert datum['type'] == 'success'
    assert datum['c_img'].shape == (480, 640, 3)
    assert datum['d_img'].shape == (480, 640)

    # Need to process it because it's their data.
    if np.isnan(np.sum(datum['d_img'])):
        print("patching NaNs to zero ...")
        cv2.patchNaNs(datum['d_img'], 0.0)
    assert not np.isnan(np.sum(datum['d_img']))
    datum = datum_to_net_dim(datum, robot=ROBOT)

    # NOTE Don't forget to change their labeling !!!!!!
    assert datum['d_img'].shape == (480, 640, 3)
    #if datum['class'] == 0:
    #    datum['class'] = 1
    #    num_failures += 1
    #elif datum['class'] == 1:
    #    datum['class'] = 0
    #    num_successes += 1
    #else:
    #    raise ValueError(datum['class'])

    # UPDATE UPDATE: OK, their three failure cases here were actually successes...
Ejemplo n.º 9
0
labels = list()
userinput = 'a'
while userinput != 'q':
    print("rollout", rollout_num)
    # generate random numbers for top/bottom, success/failure of rollout
    top = np.random.randint(2)
    success = np.random.randint(2)
    labels.append(str(success))  # classification labels
    print("Top (1)/Bottom (0): ", top)
    print("Success (1)/Failure (0): ", success)
    userinput = raw_input(
        "press enter to take the picture, or enter q to quit: ")
    if userinput != 'q':
        c_img = camera.read_color_data()
        d_img = camera.read_depth_data()
        # preprocess depth image
        if np.isnan(np.sum(d_img)):
            cv2.patchNaNs(d_img, 0.0)
        d_img = depth_to_net_dim(d_img, robot="HSR")
        # save images
        cv2.imwrite(
            os.path.join(SAVE_PATH, "rgb_" + str(rollout_num) + ".png"), c_img)
        cv2.imwrite(
            os.path.join(SAVE_PATH, "depth_" + str(rollout_num) + ".png"),
            d_img)
        rollout_num += 1

# write labels to output
with open(os.path.join(SAVE_PATH, "labels.txt"), 'w') as fh:
    fh.write("\n".join(labels))
Ejemplo n.º 10
0
        )

        pkl_f = os.path.join(ff, 'rollout.pkl')
        number = str(ff.split('_')[-1])
        file_path = os.path.join(ROLLOUTS, pkl_f)
        datum = pickle.load(open(file_path, 'rb'))
        assert type(datum) is dict

        # Debug and accumulate statistics for plotting later.
        print("\nOn data: {}, number {}".format(file_path, number))
        print("    data['pose']: {}".format(np.array(datum['pose'])))
        print("    data['type']: {}".format(np.array(datum['type'])))
        num = str(number).zfill(3)
        assert datum['c_img'].shape == (480, 640, 3)
        assert datum['d_img'].shape == (480, 640)
        cv2.patchNaNs(datum['d_img'], 0)  # NOTE the patching!

        # As usual, datum to net dim must be done before data augmentation.
        datum = datum_to_net_dim(datum, robot='Fetch')  # NOTE robot!
        assert datum['d_img'].shape == (480, 640, 3)
        assert 'c_img' in datum.keys() and 'd_img' in datum.keys(
        ) and 'pose' in datum.keys()

        # SKIP points that have pose[0] (i.e., x value) less than some threshold.
        if datum['pose'][0] <= 30:
            print("    NOTE: skipping this due to pose: {}".format(
                datum['pose']))
            num_skipped += 1
            continue
        if datum['type'] != 'grasp':
            print("    NOTE: skipping, type: {}".format(datum['type']))
Ejemplo n.º 11
0
image_num = 1
for i in range(2, 304, 1):
    data = pickle.load(open(dirPath + str(i) + '.pkl', 'rb'))
    RGBImage = data["RGBImage"]
    depthImage = data["depthImage"]
    w, h = depthImage.shape
    # NaNs=
    # NaNs=np.isnan(depthImage).astype(np.uint8)
    # num_of_NaNs=np.sum(NaNs.flat)
    # print 'NaNs % in the image:',num_of_NaNs/w/h*100
    # cv2.imshow('NaNs',NaNs*255)
    # cv2.waitKey(1000)
    # raw_input()
    # continue
    no_NaNs_image = cv2.patchNaNs(depthImage, 0)
    # ones=np.ones((w,h)).astype(np.float32)
    # notNaNs=~np.isnan(depthImage)*ones
    # no_NaNs_image=notNaNs*depthImage
    outData = {
        "RGBImage": RGBImage,
        "depthImage": no_NaNs_image,
        "armState": data["armState"],
        "headState": data["headState"],
        "markerPos": data["markerPos"]
    }
    pickle.dump(outData, open(dstDirPath + str(image_num) + ".pkl", "wb"))
    image_num = image_num + 1
    # time.sleep(0.1)
    print(str(image_num))
    continue