Ejemplo n.º 1
0
    def gcall(self):

        if self.n == 0:
            return

        system.DAE.y = matrix(system.DAE.y)
        V = system.DAE.y[self.v]
        V2 = mul(V, V)
        p = mul(matrix(self.g), V2)
        q = mul(matrix(self.b), V2)

        # #V = matrix(0, (system.Shunt.n, 1))
        # V = [1.0] * system.Shunt.n
        # print(V)
        # for i in range(system.Shunt.n):
        #     V[i] = system.DAE.y[self.v[i]]
        # print(V)
        # V = np.array(V)
        # V2 = V * V
        # print(V2)
        # J = [1] * system.Shunt.n
        # print(self.a)
        # print(J)
        # p = [0] * system.Shunt.n
        # q = [0] * system.Shunt.n

        # for i in range(system.Shunt.n):
        #      p[i] = self.g[i] * V2[i]
        #      q[i] = self.b[i] * V2[i]

        for key, value in zip(self.a, p):
            system.DAE.g[key] += value
        for key, value in zip(self.v, q):
            system.DAE.g[key] -= value
Ejemplo n.º 2
0
    def Gycall(self):

        if self.n == 0:
            return

        T1 = self.T1
        T2 = self.T2
        T3 = self.T3
        T4 = self.T4

        Kp = self.Kp
        Kv = self.Kv

        vsmax = self.vsmax
        vsmin = self.vsmin

        vss = system.DAE.y[self.vss]
        z = [0] * self.n
        z = matrix(z)
        for i in range(self.n):
            if vss[i] < vsmax[i] and vss[i] > vsmin[i]:
                if self.u[i]:
                    z[i] = 1

        system.DAE.Gy = system.DAE.Gy - spmatrix(1, self.vss, self.vss, (system.DAE.ny, system.DAE.ny))\
                             + spmatrix(z, self.vref, self.vss, (system.DAE.ny, system.DAE.ny))

        A = div(T1, T2)
        C = div(T3, T4)
        E = mul(C, A)
        system.DAE.Gy = system.DAE.Gy + spmatrix(mul(z, mul(Kv, E)), self.vss, self.v, (system.DAE.ny, system.DAE.ny)) \
                        + spmatrix(mul(z, mul(Kp, E)), self.vss, self.p, (system.DAE.ny, system.DAE.ny))
Ejemplo n.º 3
0
    def setx0(self):

        if self.n == 0:
            return

        VSI = [0] * self.n
        SIw = [0] * self.n
        SIp = [0] * self.n
        SIv = [0] * self.n
        for i in range(self.n):
            if self.ni[i] == 1:
                SIw[i] = i
                VSI[i] = system.DAE.x[self.omega[SIw[i]]]
            elif self.ni[i] == 2:
                SIp[i] = i
                VSI[i] = system.DAE.y[self.p[SIp[i]]]
                self.Kp[i] = self.Kw[i]
                self.Kw[i] = 0.0
                self.Kv[i] = 0.0
            elif self.ni[i] == 3:
                SIv[i] = i
                VSI[i] = system.DAE.y[self.v[SIv[i]]]
                self.Kv[i] = self.Kw[i]
                self.Kw[i] = 0.0
                self.Kp[i] = 0.0
        VSI = matrix(VSI)
        # VSI = system.DAE.x[self.omega[SIw]]

        Kw = mul(self.u, self.Kw)
        Kp = mul(self.u, self.Kp)
        Kv = mul(self.u, self.Kv)

        Tw = self.Tw
        T2 = self.T2
        T4 = self.T4
        Ta = self.Ta

        for i in range(self.n):
            if Tw[i] == 0.0:
                Tw[i] = 0.01
                print(
                    ' Tw cannot be zero. Default value Tw = 0.01 will be used')

            if T2[i] == 0.0:
                T2[i] = 0.01
                print(
                    ' T2 cannot be zero. Default value Tw = 0.01 will be used')
            if T4[i] == 0.0:
                T4[i] = 0.01
                print(
                    ' T2 cannot be zero. Default value Tw = 0.01 will be used')

        system.DAE.x[self.v1] = mul(-(Kw + Kp + Kv), VSI)
        system.DAE.x[self.v2] = 0
        system.DAE.x[self.v3] = 0

        for i in range(self.n):
            if self.s2[i] == 0.0:
                self.s2[i] = -1.0
        system.DAE.y[self.vss] = 0.0
Ejemplo n.º 4
0
    def fcall(self):

        if self.n == 0:
            return

        tg1 = system.DAE.x[self.tg1]
        tg2 = system.DAE.x[self.tg2]
        tg3 = system.DAE.x[self.tg3]
        wref = system.DAE.y[self.wref]


        gain = div(matrix(1.0, (self.n, 1)), self.R)

        a_s = div(matrix(1.0, (self.n, 1)), self.Ts)
        ac = div(matrix(1.0, (self.n, 1)), self.Tc)
        a5 = div(matrix(1.0, (self.n, 1)), self.T5)
        K1 = mul(self.T3, ac)
        K2 = 1 - K1
        K3 = mul(self.T4, a5)
        K4 = 1 - K3
        system.Syn6.omega = matrix(system.Syn6.omega)
        omega = system.Syn6.omega[self.a]

        tin = self.Porder + mul(gain, wref - system.DAE.x[omega])
        for i in range(self.n):
            tin[i] = max(tin[i], self.Pmin[i])
            tin[i] = min(tin[i], self.Pmax[i])

        system.DAE.f[self.tg1] = mul(self.u, a_s, -tg1+tin)
        system.DAE.f[self.tg2] = mul(self.u, ac, -tg2 + mul(K2, tg1))
        system.DAE.f[self.tg3] = mul(self.u, a5, -tg2 + mul(K4, tg2+mul(K1, tg1)))
Ejemplo n.º 5
0
    def Gycall(self):

        if self.n == 0:
            return

        V = mul(2 * self.u, system.DAE.y[self.v])

        system.DAE.Gy = system.DAE.Gy + spmatrix(
            mul(self.dat[0], V), self.a, self.v,
            (system.DAE.ny, system.DAE.ny)) - spmatrix(
                mul(self.dat[1], V), self.v, self.v,
                (system.DAE.ny, system.DAE.ny))
Ejemplo n.º 6
0
    def Fxcall(self):

        if self.n == 0:
            return


        wref = system.DAE.y[self.wref]



        gain = div(matrix(1.0, (self.n, 1)), self.R)

        a_s = div(matrix(1.0, (self.n, 1)), self.Ts)
        ac = div(matrix(1.0, (self.n, 1)), self.Tc)
        a5 = div(matrix(1.0, (self.n, 1)), self.T5)
        K1 = mul(self.T3, ac)
        K2 = 1 - K1
        K3 = mul(self.T4, a5)
        K4 = 1 - K3
        system.Syn6.omega = matrix(system.Syn6.omega)
        omega = system.Syn6.omega[self.a]

        tin = self.Porder + mul(gain, wref - system.DAE.x[omega])
        for i in range(self.n):
            tin[i] = max(tin[i], self.Pmin[i])
            tin[i] = min(tin[i], self.Pmax[i])

        u = matrix(1, (self.n, 1))

        # windup limit
        for i in range(self.n):
            if tin[i] < self.Pmax[i] and tin[i] > self.Pmin[i]:
                u[i] = 1
            else:
                u[i] = 0

        system.DAE.Fx = system.DAE.Fx \
                        - spmatrix(mul(u, self.u, a_s, gain), self.tg1, omega, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(a_s, self.tg1, self.tg1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(ac, self.tg2, self.tg2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(a5, self.tg3, self.tg3, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(mul(ac, self.u, K2), self.tg2, self.tg1, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(mul(a5, self.u, K4), self.tg3, self.tg2, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(mul(a5, self.u, K1, K4), self.tg3, self.tg2, (system.DAE.nx, system.DAE.nx))

        system.DAE.Fy = system.DAE.Fy \
                        + spmatrix(mul(u, self.u, a_s, gain), self.tg1, self.wref, (system.DAE.nx, system.DAE.ny))

        system.DAE.Gx = system.DAE.Gx \
                        + spmatrix(u, self.pm, self.tg3, (system.DAE.ny, system.DAE.nx)) \
                        + spmatrix(mul(u, K3), self.pm, self.tg2, (system.DAE.ny, system.DAE.nx)) \
                        + spmatrix(mul(u, K1, K3), self.pm, self.tg1, (system.DAE.ny, system.DAE.nx))
Ejemplo n.º 7
0
    def gcall(self):

        if self.n == 0:
            return

        V = system.DAE.y[self.v]
        V2 = mul(self.u, V, V)
        V2 = matrix(V2)

        system.DAE.g = system.DAE.g + spmatrix(
            mul(self.dat[0], V2), self.a, [0],
            (system.DAE.ny, 1)) - spmatrix(mul(self.dat[1], V2), self.v, [0],
                                           (system.DAE.ny, 1))
Ejemplo n.º 8
0
    def base(self, Sb = 100.0, Vb = None):

        for var in self._voltages:
            self.__dict__[var] = mul(self.__dict__[var], self.Vn)
            self.__dict__[var] = div(self.__dict__[var], Vb)

        for var in self._powers:
            self.__dict__[var] = mul(self.__dict__[var], self.Sn)
            self.__dict__[var] = div(self.__dict__[var], Sb)

        for var in self._currents:
            self.__dict__[var] = mul(self.__dict__[var], self.Sn)
            self.__dict__[var] = div(self.__dict__[var], self.Vn)
            self.__dict__[var] = mul(self.__dict__[var], Vb)
            self.__dict__[var] /= Sb

        if len(self._z) or len(self._y):

            Zn = div(self.Vn**2, self.Sn)
            #print(Zn)
            Zb = div(mul(Vb, Vb), Sb)
            #print(Zb)

            for var in self._z:
                self.__dict__[var] = mul(self.__dict__[var], Zn)
                self.__dict__[var] = div(self.__dict__[var], Zb)

            for var in self._y:
                if self.__dict__[var].typecode == 'd':
                    self.__dict__[var] = div(self.__dict__[var], Zn)
                    self.__dict__[var] = mul(self.__dict__[var], Zb)
                    #print(self.__dict__[var])
                if self.__dict__[var].typecode == 'z':
                    self.__dict__[var] = div(self.__dict__[var], Zn + 0j)
                    self.__dict__[var] = mul(self.__dict__[var], Zb + 0j)
Ejemplo n.º 9
0
    def Gycall(self):

        if self.n == 0:
            return

        V = 2 * system.DAE.y[self.v]
        g = matrix(self.g)
        b = matrix(self.b)
        m = system.DAE.ny

        system.DAE.Gy = system.DAE.Gy + spmatrix(mul(V, g), self.a, self.v,
                                                 (m, m)) - spmatrix(
                                                     mul(V, b), self.v, self.v,
                                                     (m, m))
Ejemplo n.º 10
0
    def setx0(self):

        vg = system.DAE.y[self.bv]
        vf = mul(self.u, system.Syn6.vf0[self.a])
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        # 检查参数

        for i in range(self.n):
            if self.Te[i] == 0:
                self.Te[i] = 1
                print('<%i> Te不能小于等于0,设置Te = 1 [s]' % i)
            if self.Tr[i] <= 0:
                self.Tr[i] = 0.001
                print('<%i> Tr不能小于等于0,设置Te = 0.001 [s]' % i)
            if self.Ke[i] <= 0:
                self.Ke[i] = 1
                print('<%i> Ke不能小于等于0,设置Ke = 1 ' % i)
            if self.Tf[i] <= 0:
                self.Tf[i] = 0.1
                print('<%i> T1不能小于等于0,设置T1 = 0.1 [s]' % i)
            if self.Ta[i] <= 0:
                self.Ta[i] = 0.1
                print('<%i> T4不能小于等于0,设置T4 = 0.1 [s]' % i)

        #
        Ce = mul(self.Ke, vf) + mul(mul(self.Ae, exp(mul(self.Be, abs(vf)))),
                                    vf)

        system.DAE.x[self.vm] = mul(self.u, vg)
        self.vref0 = div(Ce, self.Ka) + vg

        system.DAE.x[self.vr1] = Ce
        system.DAE.x[self.vr2] = div(mul(-self.Kf, vf), self.Tf)
        system.DAE.x[self.vf] = vf

        system.DAE.y[self.vref] = mul(self.u, self.vref0)

        for i in range(self.n):
            if Ce[i] > self.vrmax[i]:
                print('Warn: vr1超出最大值vrmax')
            if Ce[i] < self.vrmin[i]:
                print('Warn: vr1小于最小值vrmin')

        for i in range(self.n):
            if self.u[i] == 1:
                system.Syn6.vf0[self.a[i]] = 0
Ejemplo n.º 11
0
 def __init__(self):
     base_device.__init__(self)
     self.u = mul(matrix(self.u), matrix(system.PV.u))
     self._data.update({
         'bus': None,
         'Type': 1,
         'vrmax': 3.3,
         'vrmin': -2.6,
         'K0': 0,
         'T1': 0,
         'T2': 0,
         'T3': 0,
         'T4': 0,
         'Te': 0,
         'Tr': 0,
         'Ae': 0,
         'Be': 0
     })
     self._type = 'Avr1'
     self._name = 'Avr1'
     self._bus = {'bus': ['a', 'v']}
     self._algebs = ['vref']  # 后续得修改
     self._states = ['vm', 'vr1', 'vr2', 'vf']  # 后续得修改
     self._params.extend([
         'u', 'vrmax', 'vrmin', 'K0', 'T1', 'T2', 'T3', 'T4', 'Te', 'Tr',
         'Ae', 'Be'
     ])
     self._voltages = ['V0']  # 后续得修改
     self._powers = ['Pg']  # 后续得修改
     self.ba = []
     self.bv = []
Ejemplo n.º 12
0
    def Gycall(self):
        system.DAE.y = matrix(system.DAE.y)
        U = exp(system.DAE.y[system.Bus.a] * 1j)
        V = mul(system.DAE.y[system.Bus.v] + 0j, U)
        I = self.Y * V
        nb = len(system.Bus.a)
        diagU = spmatrix(U, system.Bus.a, system.Bus.a, (nb, nb), 'z')
        diagV = spmatrix(V, system.Bus.a, system.Bus.a, (nb, nb), 'z')
        diagI = spmatrix(I, system.Bus.a, system.Bus.a, (nb, nb), 'z')
        dS = self.Y * diagU

        dS = diagV * dS.H.T

        dS += diagI.H.T * diagU
        dR = diagI
        dR = dR - self.Y * diagV

        dR = diagV.H.T * dR

        # system.DAE.Gy = matrix(0.0, (system.DAE.ny, system.DAE.ny))
        #
        # system.DAE._list2matrix()
        # system.DAE.Gy = spmatrix(dR.imag().V, dR.imag().I, dR.imag().J, (system.DAE.ny, system.DAE.ny)) \
        #                 + spmatrix(dR.real().V, dR.real().I, dR.real().J+system.Bus.n, (system.DAE.ny, system.DAE.ny)) \
        #                 + spmatrix(dS.real().V, dS.real().I+system.Bus.n, dS.real().J, (system.DAE.ny, system.DAE.ny)) \
        #                 + spmatrix(dS.imag().V, dS.imag().I+system.Bus.n, dS.imag().J+system.Bus.n, (system.DAE.ny, system.DAE.ny))

        Gy = sparse([[dR.imag(), dR.real()], [dS.real(), dS.imag()]])
        # system.DAE.Gy = zeros([system.DAE.ny,system.DAE.ny])
        system.DAE.Gy = spmatrix(Gy.V, Gy.I, Gy.J,
                                 (system.DAE.ny, system.DAE.ny))

        system.DAE.Gy = matrix(system.DAE.Gy)
Ejemplo n.º 13
0
    def gcall(self):

        self.vfd = system.Syn6.vf[self.a]



        system.DAE.g = system.DAE.g + spmatrix(system.DAE.x[self.vf], self.vfd, [0]*self.n, (system.DAE.ny, 1)) \
                       + spmatrix(mul(self.u, self.vref0)-system.DAE.y[self.vref], self.vref, [0]*self.n, (system.DAE.ny, 1))
Ejemplo n.º 14
0
    def gcall(self):

        system.DAE.y = matrix(system.DAE.y)
        zeros = [0.0] * system.DAE.ny
        system.DAE.g = zeros
        system.DAE.g = matrix(system.DAE.g)
        Vn = exp(system.DAE.y[system.Bus.a] * 1j)
        Vc = mul(system.DAE.y[system.Bus.v] + 0j, Vn)
        Ic = self.Y * Vc
        S = mul(Vc, Ic.H.T)

        self.p = S.real()

        self.q = S.imag()

        for i in range(system.Bus.n):
             system.DAE.g[i] = self.p[i]
             system.DAE.g[i+system.Bus.n] = self.q[i]
Ejemplo n.º 15
0
    def synsat(self):

        # print(type([0.8] * self.n))
        # print(matrix(0.8, (self.n, 1)))
        b = matrix([[matrix(0.8, (self.n, 1))],
                    list([1.0 - self.S10]),
                    list([1.2 * (1.0 - self.S12)])])
        # print(matrix([12.5, -25, 12.5]))
        c2 = b * matrix([12.5, -25, 12.5])
        c1 = b * matrix([-27.5, 50, -22.5])
        c0 = b * matrix([15, -24, 10])

        output = system.DAE.x[self.e1q]

        for i in range(self.n):
            if system.DAE.x[self.e1q[i]] > 0.8:
                output[i] = mul(c2[i], system.DAE.x[self.e1q[i]]**2) + mul(
                    c1[i], system.DAE.x[self.e1q[i]]) + c0[i]

        return output
Ejemplo n.º 16
0
    def G(u, v, alpha=1.0, beta=0.0, trans='N'):
        """
        If trans is 'N':

            v := alpha * [ -diag(d),  -d,  -I;  0,  0,  -I ] * u + beta * v.

        If trans is 'T':

            v := alpha * [ -diag(d), 0;  -d', 0;  -I, -I ] * u + beta * v.
        """

        v *= beta

        if trans is 'N':
            v[:N] -= alpha * (base.mul(d, u[:N] + u[N]) + u[-N:])
            v[-N:] -= alpha * u[-N:]

        else:
            v[:N] -= alpha * base.mul(d, u[:N])
            v[N] -= alpha * blas.dot(d, u, n=N)
            v[-N:] -= alpha * (u[:N] + u[N:])
Ejemplo n.º 17
0
    def Gycall(self):
        system.DAE.y = matrix(system.DAE.y)
        V = 2 * system.DAE.y[self.v]  #shunt bus 的索引?
        conductance = self.g  #网络中每条母线的电导列向量
        conductance = matrix(conductance)
        susceptance = self.b  #电纳列向量
        susceptance = matrix(susceptance)

        m = len(system.DAE.y)  #代数变量的个数
        conducv = mul(conductance, V)

        suscepv = mul(susceptance, V)

        spconducv = spmatrix(conducv, self.a, self.v, (m, m), 'z')

        spcsuscepv = spmatrix(suscepv, self.v, self.v, (m, m), 'z')

        system.DAE.Gy = system.DAE.Gy + spmatrix(conducv, self.a, self.v,
                                                 (m, m), 'z') - spmatrix(
                                                     suscepv, self.v, self.v,
                                                     (m, m), 'z')
        system.DAE.Gy = sparse(system.DAE.Gy)
        system.DAE.Gy = matrix(system.DAE.Gy.real())
Ejemplo n.º 18
0
    def setdata(self):

        Wn = 2 * 3.1415926 * system.Settings.freq

        # 转矩系数:A+B*slip+C*slip^2

        self.A = self.a1 + self.b + self.c
        self.B = -self.b - 2 * self.c
        self.C = self.c

        # 1/2*Hm
        self.i2Hm = div(1, 2 * self.Hm)

        # x0,x',x''
        self.x0 = self.xs + self.xm
        self.x1 = self.xs + div(mul(self.xr1, self.xm), self.xr1 + self.xm)
        self.x2 = self.xs + div(
            mul(self.xr1, self.xm, self.xr2),
            mul(self.xr1, self.xm) + mul(self.xr2, self.xm) +
            mul(self.xr1, self.xr2))

        # T'0,T''0
        for i in range(self.n):
            if self.rr1[i] == 0:
                self.rr1[i] = 1
            if self.rr2[i] == 0:
                self.rr2[i] = 1

        self.T10 = div(self.xr1 + self.xm, mul(self.rr1, Wn))
        self.T20 = div(
            self.xr2 + div(mul(self.xr1, self.xm), self.xr1 + self.xm),
            mul(self.rr2, Wn))

        # 1/xm, x's = xs+xr1

        for i in range(self.n):
            if self.xm[i] == 0:
                print('第%i 台感应电机的磁抗为0' % i)
                self.xm[i] = 1
            if self.tup[i] < 0:
                self.tup = 0

        self.ixm = div(1, self.xm)
        self.x1s = self.xs + self.xr1

        if self.sup == 0:
            self.tup = 0
Ejemplo n.º 19
0
def compute_eigs(As):
    (mu, N) = eig(matrix(As))
    N = matrix(N)
    n = len(mu)
    idx = range(n)
    W = matrix(spmatrix(1.0, idx, idx, (n, n), v.typecode))
    gesv(N, W)
    pf = mul(abs(W.T), abs(V))
    b = matrix(1.0, (1, n))
    WN = b * pf
    pf = pf.T
    for item in idx:
        mur = mu[item].real
        mui = mu[item].imag
        mu[item] = complex(round(mur, 5), round(mui, 5))
        pf[item, :] /= WN[item]
Ejemplo n.º 20
0
        def g(x, y, z):

            # Solve
            #
            #     [ K    d3    ] [ ux_y ]
            #     [            ] [      ] =
            #     [ d3'  1'*d3 ] [ ux_b ]
            #
            #         [ bx_y ]   [ D  ]
            #         [      ] - [    ] * D3 * (D2 * bx_v + bx_z - bx_w).
            #         [ bx_b ]   [ d' ]

            x[:N] -= mul(d, mul(d3, mul(d2, x[-N:]) + z[:N] - z[-N:]))
            x[N] -= blas.dot(d, mul(d3, mul(d2, x[-N:]) + z[:N] - z[-N:]))

            # Solve dy1 := K^-1 * x[:N]
            blas.copy(x, dy1, n=N)
            chompack.trsm(L, dy1, trans='N')
            chompack.trsm(L, dy1, trans='T')

            # Find ux_y = dy1 - ux_b * dy2 s.t
            #
            #     d3' * ( dy1 - ux_b * dy2 + ux_b ) = x[N]
            #
            # i.e.  x[N] := ( x[N] - d3'* dy1 ) / ( d3'* ( 1 - dy2 ) ).

            x[N] = ( x[N] - blas.dot(d3, dy1) ) / \
                ( blas.asum(d3) - blas.dot(d3, dy2) )
            x[:N] = dy1 - x[N] * dy2

            # ux_v = D4 * ( bx_v -  D1^-1 (bz_z + D * (ux_y + ux_b))
            #     - D2^-1 * bz_w )

            x[-N:] = mul(
                d4, x[-N:] - div(z[:N] + mul(d, x[:N] + x[N]), d1) -
                div(z[N:], d2))

            # uz_z = - D1^-1 * ( bx_z - D * ( ux_y + ux_b ) - ux_v )
            # uz_w = - D2^-1 * ( bx_w - uz_w )
            z[:N] += base.mul(d, x[:N] + x[N]) + x[-N:]
            z[-N:] += x[-N:]
            blas.scal(-1.0, z)

            # Return W['di'] * uz
            blas.tbmv(W['di'], z, n=2 * N, k=0, ldA=1)
Ejemplo n.º 21
0
    def gcall(self):

        if self.n == 0:
            return

        a_s = div(matrix(1.0, (self.n, 1)), self.Ts)
        ac = div(matrix(1.0, (self.n, 1)), self.Tc)
        a5 = div(matrix(1.0, (self.n, 1)), self.T5)
        K1 = mul(self.T3, ac)
        K2 = 1 - K1
        K3 = mul(self.T4, a5)
        K4 = 1 - K3
        pmech = system.DAE.x[self.tg3] + mul(K3, system.DAE.x[self.tg2]) + mul(K1, system.DAE.x[self.tg1])
        system.DAE.g = system.DAE.g \
                       + spmatrix(mul(self.u, pmech), self.pm, matrix(0, (self.n, 1)), (system.DAE.ny, 1)) \
                       + spmatrix(mul(self.u, self.wref0) - system.DAE.y[self.wref], self.wref, matrix(0, (self.n, 1)), (system.DAE.ny, 1))
Ejemplo n.º 22
0
    def __init__(self):
        base_device.__init__(self)
        self.u = mul(matrix(self.u), matrix(system.PV.u))
        self._data.update({
            'bus': None,
            'Type': 2,
            'vrmax': 5,
            'vrmin': 0,
            'Ka': 0,
            'Ta': 0,
            'Kf': 0,
            'Tf': 0,
            'Ke': 0,
            'Te': 0,
            'Tr': 0,
            'Ae': 0,
            'Be': 0
        })
        self._type = 'Avr2'
        self._name = 'Avr2'
        self.n = 0
        self._bus = {'bus': ['a', 'v']}
        self._algebs = ['vref']  # 后续得修改
        self._states = ['vm', 'vr1', 'vr2', 'vf']  # 后续得修改
        self._params.extend([
            'u', 'vrmax', 'vrmin', 'Ka', 'Ta', 'Kf', 'Tf', 'Ke', 'Te', 'Tr',
            'Ae', 'Be'
        ])
        self._voltages = ['V0']  # 后续得修改
        self._powers = ['Pg']  # 后续得修改
        self.ba = []
        self.bv = []

        self.properties.update({
            'gcall': True,
            'Gycall': True,
            'fcall': True,
            'Fxcall': True
        })
Ejemplo n.º 23
0
    def gcall(self):

        zeros = [0] * system.Bus.n
        Vn = zeros[:]
        Vc = zeros[:]
        for item1, item2 in zip(system.Bus.a, system.Bus.v):
            Vn[item1] = exp(system.DAE.y[item1] * 1j)
            Vc[item1] = (system.DAE.y[item2] + 0j) * Vn[item1]
        # system.DAE.y = matrix(system.DAE.y)
        # Vn = exp(system.DAE.y[system.Bus.a] * 1j)
        # Vc = mul(system.DAE.y[system.Bus.v] + 0j, Vn)
        Vc = matrix(Vc)
        Ic = self.Y * Vc
        S = mul(Vc, Ic.H.T)

        self.p = S.real()

        self.q = S.imag()

        for i in range(system.Bus.n):
            system.DAE.g[i] = self.p[i]
            system.DAE.g[i + system.Bus.n] = self.q[i]
Ejemplo n.º 24
0
def compute_eig(As):
    mu, N = eig(matrix(As))
    N = matrix(N)
    n = len(mu)
    idx = range(n)
    W = matrix(spmatrix(1.0, idx, idx, (n, n), N.typecode))
    gesv(N, W)
    # W = np.linalg.pinv(N)
    # W = matrix(W)
    pf = mul(abs(W.T), abs(N))
    b = matrix(1.0, (1, n))
    WN = b * pf
    pf = pf.T

    for item in idx:
        mur = mu[item].real
        mui = mu[item].imag
        mu[item] = complex(round(mur, 5), round(mui, 5))
        pf[item, :] /= WN[item]

        # print(pf)
    return pf
Ejemplo n.º 25
0
    def setx0(self):

        if self.n == 0:
            return
        system.Syn6._list2matrix()
        self.Porder = system.Syn6.pm0[self.a]  # 需要改进,若不是Syn6
        gain = div(matrix(1.0, (self.n, 1)), self.R)

        a_s = div(matrix(1.0, (self.n, 1)), self.Ts)
        ac = div(matrix(1.0, (self.n, 1)), self.Tc)
        a5 = div(matrix(1.0, (self.n, 1)), self.T5)
        K1 = mul(self.T3, ac)
        K2 = 1 - K1
        K3 = mul(self.T4, a5)
        K4 = 1 - K3

        system.DAE.x[self.tg1] = mul(self.u, self.Porder)
        system.DAE.x[self.tg2] = mul(self.u, K2, self.Porder)
        system.DAE.x[self.tg3] = mul(self.u, K4, self.Porder)
        system.DAE.f[self.tg1] = 0
        system.DAE.f[self.tg2] = 0
        system.DAE.f[self.tg3] = 0

        system.Syn6.pm0[self.a] = 0
        system.DAE.y[self.wref] = mul(self.u, self.wref0)


        for i in range(self.n):
            if self.Porder[i] > self.Pmax[i]:
                print('第%i 台Tg1机械功率超过最大值'% i)
            elif self.Porder[i] < self.Pmin[i]:
                print('第%i 台Tg1机械功率低于最小值' % i)
            else:
                print('初始化Tg1完成')

        self.pmech = system.DAE.x[self.tg3] + mul(K3, system.DAE.x[self.tg2]) + mul(K1, system.DAE.x[self.tg1])
Ejemplo n.º 26
0
    def Fxcall(self):

        if self.n == 0:
            return

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        system.DAE.Gx = system.DAE.Gx + spmatrix(
            self.u, self.vfd, self.vf, (system.DAE.ny, system.DAE.nx))
        system.DAE.Fx = system.DAE.Fx - spmatrix(
            div(matrix(1.0, (self.n, 1)), self.Tr), self.vm, self.vm,
            (system.DAE.nx, system.DAE.nx))
        system.DAE.Fy = system.DAE.Fy + spmatrix(div(
            self.u, self.Tr), self.vm, self.bv, (system.DAE.nx, system.DAE.ny))

        vm = system.DAE.x[self.vm]
        vr1 = system.DAE.x[self.vr1]
        vr2 = system.DAE.x[self.vr2]
        vf = system.DAE.x[self.vf]
        vref = system.DAE.y[self.vref]

        K1 = div(mul(self.K0, self.T2), self.T1)
        K2 = self.K0 - K1
        K3 = div(self.T4, self.T3)
        K4 = matrix(1, (self.n, 1)) - K3

        vr = mul(self.K0, vr2) + mul(K3, mul(K1, vref - vm) + vr1)

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        Se = Se + mul(mul(Se, self.Ae), vf)

        z = matrix(0, (self.n, 1))
        for i in range(self.n):
            if vr[i] < vrmax[i] and vr[i] > vrmin[i]:
                z[i] = 1

        system.DAE.Fx = system.DAE.Fx \
                        - spmatrix(div(K2, self.T1), self.vr1, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.T1), self.vr1, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(K4, K1), mul(self.K0, self.T3)), self.vr2, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(K4, mul(self.T3, self.K0)), self.vr2, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.T3), self.vr2, self.vr2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(1+Se, self.Te), self.vf, self.vf, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(mul(z, K3), self.Te), self.vf, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(mul(z, K3), K1), self.Te), self.vf, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(mul(mul(z, self.u), self.K0), self.Te), self.vf, self.vr2, (system.DAE.nx, system.DAE.nx))

        system.DAE.Fy = system.DAE.Fy \
                        + spmatrix(div(K2, self.T1), self.vr1, self.vref, (system.DAE.nx, system.DAE.ny)) \
                        + spmatrix(div(mul(K4, K1), mul(self.K0, self.T3)), self.vr2, self.vref, (system.DAE.nx, system.DAE.ny)) \
                        + spmatrix(div(mul(mul(z, K3), K1), self.Te), self.vf, self.vref, (system.DAE.nx, system.DAE.ny))
Ejemplo n.º 27
0
    def fcall(self):

        if self.n == 0:
            return

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)
        vm = system.DAE.x[self.vm]
        vr1 = system.DAE.x[self.vr1]
        vr2 = system.DAE.x[self.vr2]
        vf = system.DAE.x[self.vf]
        vref = system.DAE.y[self.vref]

        system.DAE.f[self.vm] = div(mul(self.u, vg - system.DAE.x[self.vm]),
                                    self.Tr)

        K1 = div(mul(self.K0, self.T2), self.T1)
        K2 = self.K0 - K1
        K3 = div(self.T4, self.T3)
        K4 = matrix(1, (self.n, 1)) - K3

        vr = mul(self.K0, vr2) + mul(K3, mul(K1, vref - vm) + vr1)

        system.DAE.f[self.vr1] = div(mul(self.u,
                                         mul(K2, vref - vm) - vr1), self.T1)
        system.DAE.f[self.vr2] = div(
            mul(self.u,
                mul(K4, vr1 + mul(K1, vref - vm)) - mul(self.K0, vr2)),
            mul(self.T3, self.K0))

        # hard limit

        for i in range(self.n):
            vr[i] = min(vr[i], vrmax[i])
            vr[i] = max(vr[i], vrmin[i])

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        system.DAE.f[self.vf] = div(mul(self.u, -vf + vr - mul(Se, vf)),
                                    self.Te)
 def fcall(self, x):
     fvec = mul(self.A, sin(self.omega*x + self.phi))
     return sum(fvec)
Ejemplo n.º 29
0
    def Fxcall(self):

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        system.DAE.Gx = system.DAE.Gx + spmatrix(
            self.u, self.vfd, self.vf, (system.DAE.ny, system.DAE.nx))
        system.DAE.Fx = system.DAE.Fx - spmatrix(
            div(matrix(1.0, (self.n, 1)), self.Tr), self.vm, self.vm,
            (system.DAE.nx, system.DAE.nx))
        system.DAE.Fy = system.DAE.Fy + spmatrix(div(
            self.u, self.Tr), self.vm, self.bv, (system.DAE.nx, system.DAE.ny))

        vr1 = system.DAE.x[self.vr1]
        vf = system.DAE.x[self.vf]
        Ka = mul(self.u, self.Ka)
        Kf = mul(self.u, self.Kf)
        K5 = div(Kf, self.Tf)

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        Se = Se + mul(mul(Se, self.Be), vf)

        z = matrix(0, (self.n, 1))
        for i in range(self.n):
            if vr1[i] < vrmax[i] and vr1[i] > vrmin[i]:
                z[i] = 1

        system.DAE.Fx = system.DAE.Fx \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.Tf), self.vr2, self.vr2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(K5, self.Tf), self.vr2, self.vf, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(self.Ke+Se, self.Te), self.vf, self.vf, (system.DAE.nx, system.DAE.nx)) \
                        + spmatrix(div(z, self.Te), self.vf, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(z, Ka), self.Ta), self.vr1, self.vm, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(matrix(1.0, (self.n, 1)), self.Ta), self.vr1, self.vr1, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(z, Ka), self.Ta), self.vr1, self.vr2, (system.DAE.nx, system.DAE.nx)) \
                        - spmatrix(div(mul(mul(z, K5), Ka), self.Ta), self.vr1, self.vf, (system.DAE.nx, system.DAE.nx))
        system.DAE.Fy = system.DAE.Fy \
                        + spmatrix(div(mul(z, Ka), self.Ta), self.vr1, self.vref, (system.DAE.nx, system.DAE.ny))
 def dfcall(self, x):
     dfvec = mul(mul(self.A, self.omega),
     cos(self.omega*x + self.phi))
     return sum(dfvec)
Ejemplo n.º 31
0
    def fcall(self):

        vg = system.DAE.y[self.bv]
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)
        vm = system.DAE.x[self.vm]
        vr1 = system.DAE.x[self.vr1]
        vr2 = system.DAE.x[self.vr2]
        vf = system.DAE.x[self.vf]
        vref = system.DAE.y[self.vref]

        system.DAE.f[self.vm] = div(mul(self.u, vg - system.DAE.x[self.vm]),
                                    self.Tr)  #

        K5 = div(self.Kf, self.Tf)

        system.DAE.f[self.vr1] = div(
            mul(self.u,
                mul(self.Ka, vref - vm - vr2 - mul(K5, vf)) - vr1), self.Ta)
        system.DAE.f[self.vr2] = div(mul(-self.u, mul(K5, vf) + vr2), self.Tf)

        # non-windup limit

        for i in range(self.n):
            if vr1[i] >= vrmax[i] and system.DAE.f[self.vr1[i]] > 0:
                system.DAE.f[self.vr1[i]] = 0
            if vr1[i] <= vrmin[i] and system.DAE.f[self.vr1[i]] < 0:
                system.DAE.f[self.vr1[i]] = 0

        for i in range(self.n):
            vr1[i] = min(vr1[i], vrmax[i])
            vr1[i] = max(vr1[i], vrmin[i])

        system.DAE.x[self.vr1] = mul(self.u, vr1)

        Se = mul(self.Ae, exp(mul(self.Be, abs(vf))))

        system.DAE.f[self.vf] = div(
            mul(self.u, vr1 - mul(self.Ke, vf) - mul(Se, vf)), self.Te)
Ejemplo n.º 32
0
        p, q = d, a
    else:
        p, q = a, d
    x0 = y[:]
    
S = matrix(0.0, (q,1))

# First, compute two initial points on the tradeoff curve
lamT = [50.0, 0.02]
nrmT = [0.0, 0.0]
errT = [0.0, 0.0]

for i in xrange(len(lamT)):
    Cd = matrix(2.0*lamT[i], (n,1))
    C = base.spdiag(Cd)
    d = -base.mul(Cd, x0)
    
    sol = nucnrm.nrmapp(A, B, C = C, d = d)
    x = sol['x']
    
    lapack.gesvd(matrix(A*x, (p,q)) + B, S)
    nrmT[i] = sum(S)
    errT[i] = blas.dot(x-x0, x-x0)
   
# plot the tradeoff curve upper/lower bounds with the initial 2 points
pylab.figure(0)
N = 200
slope = -matrix(lamT)
errM = matrix(errT)
nrmM = matrix(nrmT)
xx = matrix(range(N))*((errM[-1]-errM[0])/(N-1))+errM[0]
Ejemplo n.º 33
0
    def setx0(self):

        if self.n == 0:
            return

        vg = system.DAE.y[self.bv]
        vf = mul(self.u, system.Syn6.vf0[self.a])
        vrmax = mul(self.u, self.vrmax)
        vrmin = mul(self.u, self.vrmin)

        # 检查参数

        for i in range(self.n):
            if self.Te[i] <= 0:
                self.Te[i] = 1
                print('<%i> Te不能小于等于0,设置Te = 1 [s]' % i)
            if self.Tr[i] <= 0:
                self.Tr[i] = 0.001
                print('<%i> Tr不能小于等于0,设置Te = 0.001 [s]' % i)
            if self.K0[i] <= 0:
                self.K0[i] = 400
                print('<%i> K0不能小于等于0,设置K0 = 400 ' % i)
            if self.T1[i] <= 0:
                self.T1[i] = 0.1
                print('<%i> T1不能小于等于0,设置T1 = 0.1 [s]' % i)
            if self.T4[i] <= 0:
                self.T4[i] = 0.01
                print('<%i> T4不能小于等于0,设置T4 = 0.01 [s]' % i)

        #
        Ce = -vf - mul(mul(self.Ae, exp(mul(self.Be, vf))), vf)
        K1 = mul(self.K0, div(self.T2, self.T1))
        K2 = self.K0 - K1
        K3 = div(self.T3, self.T4)
        K4 = 1 - K3

        system.DAE.x[self.vm] = mul(self.u, vg)
        self.vref0 = vg - div(Ce, self.K0)

        system.DAE.x[self.vr1] = mul(self.u, mul(K2, self.vref0 - vg))
        system.DAE.x[self.vr2] = mul(self.u, mul(K4, self.vref0 - vg))
        system.DAE.x[self.vf] = vf

        system.DAE.y[self.vref] = mul(self.u, self.vref0)

        vr = mul(self.u, mul(self.K0, system.DAE.x[self.vr2])) + mul(
            K3,
            mul(K1, self.vref0 - vg) + system.DAE.x[self.vr1])
        for i in range(self.n):
            if vr[i] > self.vrmax[i]:
                print('Warn: vr1超出最大值vrmax')
            if vr[i] < self.vrmin[i]:
                print('Warn: vr1小于最小值vrmin')

        system.Syn6.vf0[self.a] = 0
Ejemplo n.º 34
0
def sysid(y, u, vsig, svth = None):

    """
    System identification using the subspace method and nuclear norm 
    optimization.  Estimate a linear time-invariant state-space model 
    given inputs and outputs.  The algorithm is described in [1].
    

    INPUT
    y       'd' matrix of size (p, N).  y are the measured outputs, p is 
            the number of outputs, and N is the number of data points 
            measured. 
    
    u       'd' matrix of size (m, N).  u are the inputs, m is the number 
            of inputs, and N is the number of data points.
    
    vsig    a weighting parameter in the nuclear norm optimization, its 
            value is approximately the 1-sigma output noise level
    
    svth    an optional parameter, if specified, the model order is 
            determined as the number of singular values greater than svth 
            times the maximum singular value.  The default value is 1E-3 
    
    OUTPUT
    sol     a dictionary with the following words
            -- 'A', 'B', 'C', 'D' are the state-space matrices
            -- 'svN', the original singular values of the Hankel matrix
            -- 'sv', the optimized singular values of the Hankel matrix
            -- 'x0', the initial state x(0)
            -- 'n', the model order

    [1] Zhang Liu and Lieven Vandenberghe. "Interior-point method for 
        nuclear norm approximation with application to system 
        identification."  

    """

    m, N, p = u.size[0], u.size[1], y.size[0]
    if y.size[1] != N:
        raise ValueError, "y and u must have the same length"
           
    # Y = G*X + H*U + V, Y has size a x b, U has size c x b, Un has b x d
    r = min(int(30/p),int((N+1.0)/(p+m+1)+1.0))
    a = r*p
    c = r*m
    b = N-r+1
    d = b-c
    
    # construct Hankel matrix Y
    Y = Hankel(y,r,b,p=p,q=1)
    
    # construct Hankel matrix U
    U = Hankel(u,r,b,p=m,q=1)
    
    # compute Un = null(U) and YUn = Y*Un
    Vt = matrix(0.0,(b,b))
    Stemp = matrix(0.0,(c,1))
    Un = matrix(0.0,(b,d))
    YUn = matrix(0.0,(a,d))
    lapack.gesvd(U,Stemp,jobvt='A',Vt=Vt)
    Un[:,:] = Vt.T[:,c:]
    blas.gemm(Y,Un,YUn)
    
    # compute original singular values
    svN = matrix(0.0,(min(a,d),1))
    lapack.gesvd(YUn,svN)
    
    # variable, [y(1);...;y(N)]
    # form the coefficient matrices for the nuclear norm optimization
    # minimize | Yh * Un |_* + alpha * | y - yh |_F
    AA = Hankel_basis(r,b,p=p,q=1)
    A = matrix(0.0,(a*d,p*N))
    temp = spmatrix([],[],[],(a,b),'d')
    temp2 = matrix(0.0,(a,d))
    for ii in xrange(p*N):
        temp[:] = AA[:,ii]
        base.gemm(temp,Un,temp2)
        A[:,ii] = temp2[:]
    B = matrix(0.0,(a,d))

    # flip the matrix if columns is more than rows
    if a < d:
        Itrans = [i+j*a for i in xrange(a) for j in xrange(d)]
        B[:] = B[Itrans]
        B.size = (d,a)
        for ii in xrange(p*N):
            A[:,ii] = A[Itrans,ii]
      
    # regularized term
    x0 = y[:]
    Qd = matrix(2.0*svN[0]/p/N/(vsig**2),(p*N,1))

    # solve the nuclear norm optimization
    sol = nrmapp(A, B, C = base.spdiag(Qd), d = -base.mul(x0, Qd))
    status = sol['status']
    x = sol['x']
    
    # construct YhUn and take the svd
    YhUn = matrix(B)
    blas.gemv(A,x,YhUn,beta=1.0)
    if a < d:
        YhUn = YhUn.T
    Uh = matrix(0.0,(a,d))
    sv = matrix(0.0,(d,1))
    lapack.gesvd(YhUn,sv,jobu='S',U=Uh)

    # determine model order
    if svth is None:
        svth = 1E-3
    svthn = sv[0]*svth
    n=1
    while sv[n] >= svthn and n < 10:
        n=n+1
    
    # estimate A, C
    Uhn = Uh[:,:n]
    for ii in xrange(n):
        blas.scal(sv[ii],Uhn,n=a,offset=ii*a)
    syseC = Uhn[:p,:]
    Als = Uhn[:-p,:]
    Bls = Uhn[p:,:]
    lapack.gels(Als,Bls)
    syseA = Bls[:n,:]
    Als[:,:] = Uhn[:-p,:]
    Bls[:,:] = Uhn[p:,:]
    blas.gemm(Als,syseA,Bls,beta=-1.0)
    Aerr = blas.nrm2(Bls)
    
    # stabilize A
    Sc = matrix(0.0,(n,n),'z')
    w = matrix(0.0, (n,1), 'z')
    Vs = matrix(0.0, (n,n), 'z')
    def F(w):
        return (abs(w) < 1.0)
    
    Sc[:,:] = syseA
    ns = lapack.gees(Sc, w, Vs, select = F)
    while ns < n:
        #print "stabilize matrix A"
        w[ns:] = w[ns:]**-1
        Sc[::n+1] = w
        Sc = Vs*Sc*Vs.H
        syseA[:,:] = Sc.real()
        Sc[:,:] = syseA
        ns = lapack.gees(Sc, w, Vs, select = F)

    # estimate B,D,x0 stored in vector [x0; vec(D); vec(B)]
    F1 = matrix(0.0,(p*N,n))
    F1[:p,:] = syseC
    for ii in xrange(1,N):
        F1[ii*p:(ii+1)*p,:] = F1[(ii-1)*p:ii*p,:]*syseA
    F2 = matrix(0.0,(p*N,p*m))
    ut = u.T
    for ii in xrange(p):
        F2[ii::p,ii::p] = ut
    F3 = matrix(0.0,(p*N,n*m))
    F3t = matrix(0.0,(p*(N-1),n*m))
    for ii in xrange(1,N):
        for jj in xrange(p):
            for kk in xrange(n):
                F3t[jj:jj+(N-ii)*p:p,kk::n] = ut[:N-ii,:]*F1[(ii-1)*p+jj,kk]
        F3[ii*p:,:] = F3[ii*p:,:] + F3t[:(N-ii)*p,:]
    
    F = matrix([[F1],[F2],[F3]])
    yls = y[:]
    Sls = matrix(0.0,(F.size[1],1))
    Uls = matrix(0.0,(F.size[0],F.size[1]))
    Vtls = matrix(0.0,(F.size[1],F.size[1]))
    lapack.gesvd(F, Sls, jobu='S', jobvt='S', U=Uls, Vt=Vtls)
    Frank=len([ii for ii in xrange(Sls.size[0]) if Sls[ii] >= 1E-6])
    #print 'Rank deficiency = ', F.size[1] - Frank
    xx = matrix(0.0,(F.size[1],1))
    xx[:Frank] = Uls.T[:Frank,:] * yls
    xx[:Frank] = base.mul(xx[:Frank],Sls[:Frank]**-1)
    xx[:] = Vtls.T[:,:Frank]*xx[:Frank] 
    blas.gemv(F,xx,yls,beta=-1.0)
    xxerr = blas.nrm2(yls)
    
    x0 = xx[:n]
    syseD = xx[n:n+p*m]
    syseD.size = (p,m)
    syseB = xx[n+p*m:]
    syseB.size = (n,m)
    
    return {'A': syseA, 'B': syseB, 'C': syseC, 'D': syseD, 'svN': svN, 'sv': \
        sv, 'x0': x0, 'n': n, 'Aerr': Aerr, 'xxerr': xxerr}