Ejemplo n.º 1
0
def mk_rand(V, cone='posdef', seed=0):
    """
    Generates random matrix U with sparsity pattern V.
    - U is positive definite if cone is 'posdef'.
    - U is completable if cone is 'completable'.
    """
    if not (cone == 'posdef' or cone == 'completable'):
        raise ValueError, "cone must be 'posdef' (default) or 'completable' "

    from cvxopt import amd
    setseed(seed)
    n = V.size[0]

    U = +V
    U.V *= 0.0
    for i in xrange(n):
        u = normal(n, 1) / sqrt(n)
        base.syrk(u, U, beta=1.0, partial=True)

    # test if U is in cone: if not, add multiple of identity
    t = 0.1
    Ut = +U
    p = amd.order(Ut)
    # Vc, NF = chompack.embed(U,p)
    symb = chompack.symbolic(U, p)
    Vc = chompack.cspmatrix(symb) + U
    while True:
        # Uc = chompack.project(Vc,Ut)
        Uc = chompack.cspmatrix(symb) + Ut
        try:
            if cone == 'posdef':
                # positive definite?
                # Y = chompack.cholesky(Uc)
                Y = Uc.copy()
                chompack.cholesky(Y)
            elif cone == 'completable':
                # completable?
                # Y = chompack.completion(Uc)
                Y = Uc.copy()
                chompack.completion(Y)
            # Success: Ut is in cone
            U = +Ut
            break
        except:
            Ut = U + spmatrix(t, xrange(n), xrange(n), (n, n))
            t *= 2.0
    return U
Ejemplo n.º 2
0
Archivo: base.py Proyecto: cvxopt/smcp
def mk_rand(V,cone='posdef',seed=0):
    """
    Generates random matrix U with sparsity pattern V.
    - U is positive definite if cone is 'posdef'.
    - U is completable if cone is 'completable'.
    """
    if not (cone=='posdef' or cone=='completable'):
        raise ValueError("cone must be 'posdef' (default) or 'completable' ")

    from cvxopt import amd
    setseed(seed)
    n = V.size[0]

    U = +V
    U.V *= 0.0
    for i in range(n):
        u = normal(n,1)/sqrt(n)
        base.syrk(u,U,beta=1.0,partial=True)

    # test if U is in cone: if not, add multiple of identity
    t = 0.1; Ut = +U
    p = amd.order(Ut)
    # Vc, NF = chompack.embed(U,p)
    symb = chompack.symbolic(U,p)
    Vc = chompack.cspmatrix(symb) + U
    while True:
        # Uc = chompack.project(Vc,Ut)
        Uc = chompack.cspmatrix(symb) + Ut
        try:
            if cone=='posdef':
                # positive definite?
                # Y = chompack.cholesky(Uc)
                Y = Uc.copy()
                chompack.cholesky(Y)
            elif cone=='completable':
                # completable?
                # Y = chompack.completion(Uc)
                Y = Uc.copy()
                chompack.completion(Y)
            # Success: Ut is in cone
            U = +Ut
            break
        except:
            Ut = U + spmatrix(t,range(n),range(n),(n,n))
            t*=2.0
    return U
Ejemplo n.º 3
0
def softmargin_appr(X,
                    d,
                    gamma,
                    width,
                    kernel='linear',
                    sigma=1.0,
                    degree=1,
                    theta=1.0,
                    Q=None):
    """
    Solves the approximate 'soft-margin' SVM problem

        maximize    -(1/2)*z'*Qc*z + d'*z
        subject to  0 <= diag(d)*z <= gamma*ones
                    sum(z) = 0

    (with variables z), and its dual problem

        minimize    (1/2)*y'*Qc^{-1}*y + gamma*sum(v)
        subject to  diag(d)*(y + b*ones) + v >= 1
                    v >= 0

    (with variables y, v, b).

    Qc is the maximum determinant completion of the projection of Q
    on a band with bandwidth 2*w+1.  Q_ij = K(xi, xj) where K is a kernel
    function and xi is the ith row of X (xi' = X[i,:]).

    Input arguments.

        X is an N x n matrix.

        d is an N-vector with elements -1 or 1; d[i] is the label of
        row X[i,:].

        gamma is a positive parameter.

        kernel is a string with values 'linear', 'rfb', 'poly', or 'tanh'.
        'linear': k(u,v) = u'*v/sigma.
        'rbf':    k(u,v) = exp(-||u - v||^2 / (2*sigma)).
        'poly':   k(u,v) = (u'*v/sigma)**degree.
        'tanh':   k(u,v) = tanh(u'*v/sigma - theta).

        sigma and theta are positive numbers.

        degree is a positive integer.

        width is a positive integer.

    Output.

        Returns a dictionary with the keys:

        'classifier'
           a Python function object that takes an M x n matrix with
           test vectors as rows and returns a vector with labels

        'completion classifier'
          a Python function object that takes an M x n matrix with
          test vectors as rows and returns a vector with labels

        'z'
           a sparse m-vector

        'cputime'
           a tuple (Ttot, Tqp, Tker) where Ttot is the total
           CPU time, Tqp is the CPU time spent solving the QP, and
           Tker is the CPU time spent computing the kernel matrix

        'iterations'
           the number of interior-point iteations

        'misclassified'
           a tuple (L1, L2) where L1 is a list of indices of
           misclassified training vectors from class 1, and L2 is a
           list of indices of misclassified training vectors from
           class 2
    """

    Tstart = cputime()

    if verbose: solvers.options['show_progress'] = True
    else: solvers.options['show_progress'] = False
    N, n = X.size

    if Q is None:
        Q, a = kernel_matrix(X,
                             kernel,
                             sigma=sigma,
                             degree=degree,
                             theta=theta,
                             V='band',
                             width=width)
    else:
        if not (Q.size[0] == N and Q.size[1] == N):
            raise ValueError("invalid kernel matrix dimensions")
        elif not type(Q) is cvxopt.base.spmatrix:
            raise ValueError("invalid kernel matrix type")
        elif verbose:
            print("using precomputed kernel matrix ..")
        if kernel == 'rbf':
            Ad = spmatrix(0.0, range(N), range(N))
            base.syrk(X, V, partial=True)
            a = Ad.V
            del Ad

    Tkernel = cputime(Tstart)

    # solve qp
    Tqp = cputime()
    y, b, v, z, optval, Lc, iters = softmargin_completion(
        Q, matrix(d, tc='d'), gamma)
    Tqp = cputime(Tqp)
    if verbose: print("utime = %f, stime = %f." % Tqp)

    # extract nonzero support vectors
    nrmz = max(abs(z))
    sv = [k for k in range(N) if abs(z[k]) > Tsv * nrmz]
    zs = spmatrix(z[sv], sv, [0 for i in range(len(sv))], (len(d), 1))
    if verbose: print("%d support vectors." % len(sv))
    Xr, zr, Nr = X[sv, :], z[sv], len(sv)

    # find misclassified training vectors
    err1 = [i for i in range(Q.size[0]) if (v[i] > 1 and d[i] == 1)]
    err2 = [i for i in range(Q.size[0]) if (v[i] > 1 and d[i] == -1)]
    if verbose:
        e1, n1 = len(err1), list(d).count(1)
        e2, n2 = len(err2), list(d).count(-1)
        print("class 1: %i/%i = %.1f%% misclassified." %
              (e1, n1, 100. * e1 / n1))
        print("class 2: %i/%i = %.1f%% misclassified." %
              (e2, n2, 100. * e2 / n2))
        del e1, e2, n1, n2

    # create classifier function object

    # CLASSIFIER 1 (standard kernel classifier)
    if kernel == 'linear':
        # w = X'*z / sigma
        w = matrix(0.0, (n, 1))
        blas.gemv(Xr, zr, w, trans='T', alpha=1.0 / sigma)

        def classifier(Y, soft=False):
            M = Y.size[0]
            x = matrix(b, (M, 1))
            blas.gemv(Y, w, x, beta=1.0)
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'rbf':

        def classifier(Y, soft=False):
            M = Y.size[0]
            # K = Y*X' / sigma
            K = matrix(0.0, (M, Nr))
            blas.gemm(Y, Xr, K, transB='T', alpha=1.0 / sigma)

            # c[i] = ||Yi||^2 / sigma
            ones = matrix(1.0, (max([M, Nr, n]), 1))
            c = Y**2 * ones[:n]
            blas.scal(1.0 / sigma, c)

            # Kij := Kij - 0.5 * (ci + aj)
            #      = || yi - xj ||^2 / (2*sigma)
            blas.ger(c, ones, K, alpha=-0.5)
            blas.ger(ones, a[sv], K, alpha=-0.5)
            x = exp(K) * zr + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'tanh':

        def classifier(Y, soft=False):
            M = Y.size[0]
            # K = Y*X' / sigma - theta
            K = matrix(theta, (M, Nr))
            blas.gemm(Y, Xr, K, transB='T', alpha=1.0 / sigma, beta=-1.0)

            K = exp(K)
            x = div(K - K**-1, K + K**-1) * zr + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'poly':

        def classifier(Y, soft=False):
            M = Y.size[0]
            # K = Y*X' / sigma
            K = matrix(0.0, (M, Nr))
            blas.gemm(Y, Xr, K, transB='T', alpha=1.0 / sigma)

            x = K**degree * zr + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    else:
        pass

    # CLASSIFIER 2 (completion kernel classifier)
    # TODO: generalize to arbitrary sparsity pattern
    L11 = matrix(Q[:width, :width])
    lapack.potrf(L11)

    if kernel == 'linear':

        def classifier2(Y, soft=False):
            M = Y.size[0]
            W = matrix(0., (width, M))
            blas.gemm(X, Y, W, transB='T', alpha=1.0 / sigma, m=width)
            lapack.potrs(L11, W)
            W = matrix([W, matrix(0., (N - width, M))])
            chompack.trsm(Lc, W, trans='N')
            chompack.trsm(Lc, W, trans='T')

            x = matrix(b, (M, 1))
            blas.gemv(W, z, x, trans='T', beta=1.0)
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'poly':

        def classifier2(Y, soft=False):
            if Y is None: return zs

            M = Y.size[0]
            W = matrix(0., (width, M))
            blas.gemm(X, Y, W, transB='T', alpha=1.0 / sigma, m=width)
            W = W**degree
            lapack.potrs(L11, W)
            W = matrix([W, matrix(0., (N - width, M))])
            chompack.trsm(Lc, W, trans='N')
            chompack.trsm(Lc, W, trans='T')

            x = matrix(b, (M, 1))
            blas.gemv(W, z, x, trans='T', beta=1.0)
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'rbf':

        def classifier2(Y, soft=False):

            M = Y.size[0]

            # K = Y*X' / sigma
            K = matrix(0.0, (width, M))
            blas.gemm(X, Y, K, transB='T', alpha=1.0 / sigma, m=width)

            # c[i] = ||Yi||^2 / sigma
            ones = matrix(1.0, (max(width, n, M), 1))
            c = Y**2 * ones[:n]
            blas.scal(1.0 / sigma, c)

            # Kij := Kij - 0.5 * (ci + aj)
            #      = || yi - xj ||^2 / (2*sigma)
            blas.ger(ones[:width], c, K, alpha=-0.5)
            blas.ger(a[:width], ones[:M], K, alpha=-0.5)
            # Kij = exp(Kij)
            K = exp(K)

            # complete K
            lapack.potrs(L11, K)
            K = matrix([K, matrix(0., (N - width, M))], (N, M))
            chompack.trsm(Lc, K, trans='N')
            chompack.trsm(Lc, K, trans='T')

            x = matrix(b, (M, 1))
            blas.gemv(K, z, x, trans='T', beta=1.0)

            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'tanh':

        def classifier2(Y, soft=False):

            M = Y.size[0]

            # K = Y*X' / sigma
            K = matrix(theta, (width, M))
            blas.gemm(X,
                      Y,
                      K,
                      transB='T',
                      alpha=1.0 / sigma,
                      beta=-1.0,
                      m=width)

            K = exp(K)
            K = div(K - K**-1, K + K**-1)

            # complete K
            lapack.potrs(L11, K)
            K = matrix([K, matrix(0., (N - width, M))], (N, M))
            chompack.trsm(Lc, K, trans='N')
            chompack.trsm(Lc, K, trans='T')

            x = matrix(b, (M, 1))
            blas.gemv(K, z, x, trans='T', beta=1.0)

            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    Ttotal = cputime(Tstart)

    return {
        'classifier': classifier,
        'completion classifier': classifier2,
        'cputime': (sum(Ttotal), sum(Tqp), sum(Tkernel)),
        'iterations': iters,
        'z': zs,
        'misclassified': (err1, err2)
    }
Ejemplo n.º 4
0
def kernel_matrix(X,
                  kernel,
                  sigma=1.0,
                  theta=1.0,
                  degree=1,
                  V=None,
                  width=None):
    """
    Computes the kernel matrix or a partial kernel matrix.

    Input arguments.

        X is an N x n matrix.

        kernel is a string with values 'linear', 'rfb', 'poly', or 'tanh'.
        'linear': k(u,v) = u'*v/sigma.
        'rbf':    k(u,v) = exp(-||u - v||^2 / (2*sigma)).
        'poly':   k(u,v) = (u'*v/sigma)**degree.
        'tanh':   k(u,v) = tanh(u'*v/sigma - theta).        kernel is a

        sigma and theta are positive numbers.

        degree is a positive integer.

        V is an N x N sparse matrix (default is None).

        width is a positive integer (default is None).

    Output.

        Q, an N x N matrix or sparse matrix.
        If V is a sparse matrix, a partial kernel matrix with the sparsity
        pattern V is returned.
        If width is specified and V = 'band', a partial kernel matrix
        with band sparsity is returned (width is the half-bandwidth).

        a, an N x 1 matrix with the products <xi,xi>/sigma.

    """
    N, n = X.size

    #### dense (full) kernel matrix
    if V is None:
        if verbose: print("building kernel matrix ..")

        # Qij = xi'*xj / sigma
        Q = matrix(0.0, (N, N))
        blas.syrk(X, Q, alpha=1.0 / sigma)
        a = Q[::N + 1]  # ai = ||xi||**2 / sigma

        if kernel == 'linear':
            pass

        elif kernel == 'rbf':
            # Qij := Qij - 0.5 * ( ai + aj )
            #      = -||xi - xj||^2 / (2*sigma)
            ones = matrix(1.0, (N, 1))
            blas.syr2(a, ones, Q, alpha=-0.5)

            Q = exp(Q)

        elif kernel == 'tanh':
            Q = exp(Q - theta)
            Q = div(Q - Q**-1, Q + Q**-1)

        elif kernel == 'poly':
            Q = Q**degree

        else:
            raise ValueError('invalid kernel type')

    #### general sparse partial kernel matrix
    elif type(V) is cvxopt.base.spmatrix:

        if verbose: print("building projected kernel matrix ...")
        Q = +V
        base.syrk(X, Q, partial=True, alpha=1.0 / sigma)

        # ai = ||xi||**2 / sigma
        a = matrix(Q[::N + 1], (N, 1))

        if kernel == 'linear':
            pass

        elif kernel == 'rbf':

            ones = matrix(1.0, (N, 1))

            # Qij := Qij - 0.5 * ( ai + aj )
            #      = -||xi - xj||^2 / (2*sigma)
            p = chompack.maxcardsearch(V)
            symb = chompack.symbolic(Q, p)
            Qc = chompack.cspmatrix(symb) + Q
            chompack.syr2(Qc, a, ones, alpha=-0.5)
            Q = Qc.spmatrix(reordered=False)
            Q.V = exp(Q.V)

        elif kernel == 'tanh':

            v = +Q.V
            v = exp(v - theta)
            v = div(v - v**-1, v + v**-1)
            Q.V = v

        elif kernel == 'poly':

            Q.V = Q.V**degree

        else:
            raise ValueError('invalid kernel type')

    #### banded partial kernel matrix
    elif V == 'band' and width is not None:

        # Lower triangular part of band matrix with bandwidth 2*w+1.
        if verbose: print("building projected kernel matrix ...")
        I = [i for k in range(N) for i in range(k, min(width + k + 1, N))]
        J = [k for k in range(N) for i in range(min(width + 1, N - k))]
        V = matrix(0.0, (len(I), 1))
        oy = 0
        for k in range(N):  # V[:,k] = Xtrain[k:k+w, :] * Xtrain[k,:].T
            m = min(width + 1, N - k)
            blas.gemv(X,
                      X,
                      V,
                      m=m,
                      ldA=N,
                      incx=N,
                      offsetA=k,
                      offsetx=k,
                      offsety=oy)
            oy += m
        blas.scal(1.0 / sigma, V)

        # ai = ||xi||**2 / sigma
        a = matrix(V[[i for i in range(len(I)) if I[i] == J[i]]], (N, 1))

        if kernel == 'linear':

            Q = spmatrix(V, I, J, (N, N))

        elif kernel == 'rbf':

            Q = spmatrix(V, I, J, (N, N))

            ones = matrix(1.0, (N, 1))

            # Qij := Qij - 0.5 * ( ai + aj )
            #      = -||xi - xj||^2 / (2*sigma)
            symb = chompack.symbolic(Q)
            Qc = chompack.cspmatrix(symb) + Q
            chompack.syr2(Qc, a, ones, alpha=-0.5)
            Q = Qc.spmatrix(reordered=False)
            Q.V = exp(Q.V)

        elif kernel == 'tanh':

            V = exp(V - theta)
            V = div(V - V**-1, V + V**-1)
            Q = spmatrix(V, I, J, (N, N))

        elif kernel == 'poly':

            Q = spmatrix(V**degree, I, J, (N, N))

        else:
            raise ValueError('invalid kernel type')
    else:
        raise TypeError('invalid type V')

    return Q, a
Ejemplo n.º 5
0
def softmargin(X,
               d,
               gamma,
               kernel='linear',
               sigma=1.0,
               degree=1,
               theta=1.0,
               Q=None):
    """
    Solves the 'soft-margin' SVM problem

        maximize    -(1/2)*z'*Q*z + d'*z
        subject to  0 <= diag(d)*z <= gamma*ones
                    sum(z) = 0

    (with variables z), and its dual problem

        minimize    (1/2)*y'*Q^{-1}*y + gamma*sum(v)
        subject to  diag(d)*(y + b*ones) + v >= 1
                    v >= 0

    (with variables y, v, b).

    Q is given by Q_ij = K(xi, xj) where K is a kernel function and xi is
    the ith row of X (xi' = X[i,:]).  If Q is singular, we replace Q^{-1}
    in the dual with its pseudo-inverse and add a constraint y in Range(Q).
    We can also use make a change of variables y = Q*u to obtain

        minimize    (1/2)*u'*Q*u + gamma*sum(v)
        subject to  diag(d)*(Q*u + b*ones) + v >= 1
                    v >= 0

    For the linear kernel (Q = X*X'), a change of variables w = X'*u allows
    us to write this in the more common form

        minimize    (1/2)*w'*w + gamma*sum(v)
        subject to  diag(d)*(X*w + b*ones) + v >= 1
                    v >= 0.


    Input arguments.

        X is an N x n matrix.

        d is an N-vector with elements -1 or 1; d[i] is the label of
        row X[i,:].

        gamma is a positive parameter.

        kernel is a string with values 'linear', 'rfb', 'poly', or 'tanh'.
        'linear': k(u,v) = u'*v/sigma.
        'rbf':    k(u,v) = exp(-||u - v||^2 / (2*sigma)).
        'poly':   k(u,v) = (u'*v/sigma)**degree.
        'tanh':   k(u,v) = tanh(u'*v/sigma - theta).

        sigma and theta are positive numbers.

        degree is a positive integer.


    Output.

        Returns a dictionary with the keys:

        'classifier'
           a Python function object that takes an M x n matrix with
           test vectors as rows and returns a vector with labels

        'z'
           a sparse m-vector

        'cputime'
           a tuple (Ttot, Tqp, Tker) where Ttot is the total
           CPU time, Tqp is the CPU time spent solving the QP, and
           Tker is the CPU time spent computing the kernel matrix

        'iterations'
           the number of interior-point iteations

        'misclassified'
           a tuple (L1, L2) where L1 is a list of indices of
           misclassified training vectors from class 1, and L2 is a
           list of indices of misclassified training vectors from
           class 2
    """

    Tstart = cputime()

    if verbose: solvers.options['show_progress'] = True
    else: solvers.options['show_progress'] = False
    N, n = X.size

    if Q is None:
        Q, a = kernel_matrix(X,
                             kernel,
                             sigma=sigma,
                             degree=degree,
                             theta=theta)
    else:
        if not (Q.size[0] == N and Q.size[1] == N):
            raise ValueError("invalid kernel matrix dimensions")
        elif not type(Q) is cvxopt.base.matrix:
            raise ValueError("invalid kernel matrix type")
        elif verbose:
            print("using precomputed kernel matrix ..")
        if kernel == 'rbf':
            Ad = spmatrix(0.0, range(N), range(N))
            base.syrk(X, V, partial=True)
            a = Ad.V
            del Ad

    Tkernel = cputime(Tstart)

    # build qp
    Tqp = cputime()
    q = matrix(-d, tc='d')
    # Inequality constraints  0 <= diag(d)*z <= gamma*ones
    G = spmatrix([], [], [], size=(2 * N, N))
    G[::2 * N + 1], G[N::2 * N + 1] = d, -d
    h = matrix(0.0, (2 * N, 1))

    if weights is 'proportional':
        dlist = list(d)
        C1 = 0.5 * N * gamma / dlist.count(1)
        C2 = 0.5 * N * gamma / dlist.count(-1)
        gvec = matrix([C1 if w == 1 else C2 for w in dlist], (N, 1))
        del dlist
        h[:N] = gvec
    elif weights is 'equal':
        h[:N] = gamma
    else:
        raise ValueError("invalid weight type")

    # solve qp
    sol = solvers.qp(Q, q, G, h, matrix(1.0, (1, N)), matrix(0.0))
    Tqp = cputime(Tqp)
    if verbose: print("utime = %f, stime = %f." % Tqp)

    # extract solution
    z, b, v = sol['x'], sol['y'][0], sol['z'][:N]

    # extract nonzero support vectors
    nrmz = max(abs(z))
    sv = [k for k in range(N) if abs(z[k]) > Tsv * nrmz]
    N, X, z = len(sv), X[sv, :], z[sv]
    zs = spmatrix(z, sv, [0 for i in range(N)], (len(d), 1))
    if verbose: print("%d support vectors." % N)

    # find misclassified training vectors
    err1 = [i for i in range(Q.size[0]) if (v[i] > 1 and d[i] == 1)]
    err2 = [i for i in range(Q.size[0]) if (v[i] > 1 and d[i] == -1)]
    if verbose:
        e1, n1 = len(err1), list(d).count(1)
        e2, n2 = len(err2), list(d).count(-1)
        print("class 1: %i/%i = %.1f%% misclassified." %
              (e1, n1, 100. * e1 / n1))
        print("class 2: %i/%i = %.1f%% misclassified." %
              (e2, n2, 100. * e2 / n2))
        del e1, e2, n1, n2

    # create classifier function object
    if kernel == 'linear':

        # w = X'*z / sigma
        w = matrix(0.0, (n, 1))
        blas.gemv(X, z, w, trans='T', alpha=1.0 / sigma)

        def classifier(Y, soft=False):
            M = Y.size[0]
            x = matrix(b, (M, 1))
            blas.gemv(Y, w, x, beta=1.0)
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'rbf':

        def classifier(Y, soft=False):
            M = Y.size[0]

            # K = Y*X' / sigma
            K = matrix(0.0, (M, N))
            blas.gemm(Y, X, K, transB='T', alpha=1.0 / sigma)

            # c[i] = ||Yi||^2 / sigma
            ones = matrix(1.0, (max([M, N, n]), 1))
            c = Y**2 * ones[:n]
            blas.scal(1.0 / sigma, c)

            # Kij := Kij - 0.5 * (ci + aj)
            #      = || yi - xj ||^2 / (2*sigma)
            blas.ger(c, ones, K, alpha=-0.5)
            blas.ger(ones, a[sv], K, alpha=-0.5)
            x = exp(K) * z + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'tanh':

        def classifier(Y, soft=False):
            M = Y.size[0]

            # K = Y*X' / sigma - theta
            K = matrix(theta, (M, N))
            blas.gemm(Y, X, K, transB='T', alpha=1.0 / sigma, beta=-1.0)

            K = exp(K)
            x = div(K - K**-1, K + K**-1) * z + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    elif kernel == 'poly':

        def classifier(Y, soft=False):
            M = Y.size[0]

            # K = Y*X' / sigma
            K = matrix(0.0, (M, N))
            blas.gemm(Y, X, K, transB='T', alpha=1.0 / sigma)

            x = K**degree * z + b
            if soft: return x
            else: return matrix([2 * (xk > 0.0) - 1 for xk in x])

    Ttotal = cputime(Tstart)

    return {
        'classifier': classifier,
        'cputime': (sum(Ttotal), sum(Tqp), sum(Tkernel)),
        'iterations': sol['iterations'],
        'z': zs,
        'misclassified': (err1, err2)
    }
Ejemplo n.º 6
0
    def F(W):
        """
        Custom solver for the system

        [  It  0   0    Xt'     0     At1' ...  Atk' ][ dwt  ]   [ rwt ]
        [  0   0   0    -d'     0      0   ...   0   ][ db   ]   [ rb  ]
        [  0   0   0    -I     -I      0   ...   0   ][ dv   ]   [ rv  ]
        [  Xt -d  -I  -Wl1^-2                        ][ dzl1 ]   [ rl1 ]
        [  0   0  -I         -Wl2^-2                 ][ dzl2 ] = [ rl2 ]
        [ At1  0   0                -W1^-2           ][ dz1  ]   [ r1  ] 
        [  |   |   |                       .         ][  |   ]   [  |  ]
        [ Atk  0   0                          -Wk^-2 ][ dzk  ]   [ rk  ]

        where

        It = [ I 0 ]  Xt = [ -D*X E ]  Ati = [ 0   -e_i' ]  
             [ 0 0 ]                         [ -Pi   0   ] 

        dwt = [ dw ]  rwt = [ rw ]
              [ dt ]        [ rt ].

        """

        # scalings and 'intermediate' vectors
        # db = inv(Wl1)^2 + inv(Wl2)^2
        db = W['di'][:m]**2 + W['di'][m:2 * m]**2
        dbi = div(1.0, db)

        # dt = I - inv(Wl1)*Dbi*inv(Wl1)
        dt = 1.0 - mul(W['di'][:m]**2, dbi)
        dtsqrt = sqrt(dt)

        # lam = Dt*inv(Wl1)*d
        lam = mul(dt, mul(W['di'][:m], d))

        # lt = E'*inv(Wl1)*lam
        lt = matrix(0.0, (k, 1))
        base.gemv(E, mul(W['di'][:m], lam), lt, trans='T')

        # Xs = sqrt(Dt)*inv(Wl1)*X
        tmp = mul(dtsqrt, W['di'][:m])
        Xs = spmatrix(tmp, range(m), range(m)) * X

        # Es = D*sqrt(Dt)*inv(Wl1)*E
        Es = spmatrix(mul(d, tmp), range(m), range(m)) * E

        # form Ab = I + sum((1/bi)^2*(Pi'*Pi + 4*(v'*v + 1)*Pi'*y*y'*Pi)) + Xs'*Xs
        #  and Bb = -sum((1/bi)^2*(4*ui*v'*v*Pi'*y*ei')) - Xs'*Es
        #  and D2 = Es'*Es + sum((1/bi)^2*(1+4*ui^2*(v'*v - 1))
        Ab = matrix(0.0, (n, n))
        Ab[::n + 1] = 1.0
        base.syrk(Xs, Ab, trans='T', beta=1.0)
        Bb = matrix(0.0, (n, k))
        Bb = -Xs.T * Es  # inefficient!?
        D2 = spmatrix(0.0, range(k), range(k))
        base.syrk(Es, D2, trans='T', partial=True)
        d2 = +D2.V
        del D2
        py = matrix(0.0, (n, 1))
        for i in range(k):
            binvsq = (1.0 / W['beta'][i])**2
            Ab += binvsq * Pt[i]
            dvv = blas.dot(W['v'][i], W['v'][i])
            blas.gemv(P[i], W['v'][i][1:], py, trans='T', alpha=1.0, beta=0.0)
            blas.syrk(py, Ab, alpha=4 * binvsq * (dvv + 1), beta=1.0)
            Bb[:, i] -= 4 * binvsq * W['v'][i][0] * dvv * py
            d2[i] += binvsq * (1 + 4 * (W['v'][i][0]**2) * (dvv - 1))

        d2i = div(1.0, d2)
        d2isqrt = sqrt(d2i)

        # compute a = alpha - lam'*inv(Wl1)*E*inv(D2)*E'*inv(Wl1)*lam
        alpha = blas.dot(lam, mul(W['di'][:m], d))
        tmp = matrix(0.0, (k, 1))
        base.gemv(E, mul(W['di'][:m], lam), tmp, trans='T')
        tmp = mul(tmp, d2isqrt)  #tmp = inv(D2)^(1/2)*E'*inv(Wl1)*lam
        a = alpha - blas.dot(tmp, tmp)

        # compute M12 = X'*D*inv(Wl1)*lam + Bb*inv(D2)*E'*inv(Wl1)*lam
        tmp = mul(tmp, d2isqrt)
        M12 = matrix(0.0, (n, 1))
        blas.gemv(Bb, tmp, M12, alpha=1.0)
        tmp = mul(d, mul(W['di'][:m], lam))
        blas.gemv(X, tmp, M12, trans='T', alpha=1.0, beta=1.0)

        # form and factor M
        sBb = Bb * spmatrix(d2isqrt, range(k), range(k))
        base.syrk(sBb, Ab, alpha=-1.0, beta=1.0)
        M = matrix([[Ab, M12.T], [M12, a]])
        lapack.potrf(M)

        def f(x, y, z):

            # residuals
            rwt = x[:n + k]
            rb = x[n + k]
            rv = x[n + k + 1:n + k + 1 + m]
            iw_rl1 = mul(W['di'][:m], z[:m])
            iw_rl2 = mul(W['di'][m:2 * m], z[m:2 * m])
            ri = [
                z[2 * m + i * (n + 1):2 * m + (i + 1) * (n + 1)]
                for i in range(k)
            ]

            # compute 'derived' residuals
            # rbwt = rwt + sum(Ai'*inv(Wi)^2*ri) + [-X'*D; E']*inv(Wl1)^2*rl1
            rbwt = +rwt
            for i in range(k):
                tmp = +ri[i]
                qscal(tmp, W['beta'][i], W['v'][i], inv=True)
                qscal(tmp, W['beta'][i], W['v'][i], inv=True)
                rbwt[n + i] -= tmp[0]
                blas.gemv(P[i], tmp[1:], rbwt, trans='T', alpha=-1.0, beta=1.0)
            tmp = mul(W['di'][:m], iw_rl1)
            tmp2 = matrix(0.0, (k, 1))
            base.gemv(E, tmp, tmp2, trans='T')
            rbwt[n:] += tmp2
            tmp = mul(d, tmp)  # tmp = D*inv(Wl1)^2*rl1
            blas.gemv(X, tmp, rbwt, trans='T', alpha=-1.0, beta=1.0)

            # rbb = rb - d'*inv(Wl1)^2*rl1
            rbb = rb - sum(tmp)

            # rbv = rv - inv(Wl2)*rl2 - inv(Wl1)^2*rl1
            rbv = rv - mul(W['di'][m:2 * m], iw_rl2) - mul(W['di'][:m], iw_rl1)

            # [rtw;rtt] = rbwt + [-X'*D; E']*inv(Wl1)^2*inv(Db)*rbv
            tmp = mul(W['di'][:m]**2, mul(dbi, rbv))
            rtt = +rbwt[n:]
            base.gemv(E, tmp, rtt, trans='T', alpha=1.0, beta=1.0)
            rtw = +rbwt[:n]
            tmp = mul(d, tmp)
            blas.gemv(X, tmp, rtw, trans='T', alpha=-1.0, beta=1.0)

            # rtb = rbb - d'*inv(Wl1)^2*inv(Db)*rbv
            rtb = rbb - sum(tmp)

            # solve M*[dw;db] = [rtw - Bb*inv(D2)*rtt; rtb + lt'*inv(D2)*rtt]
            tmp = mul(d2i, rtt)
            tmp2 = matrix(0.0, (n, 1))
            blas.gemv(Bb, tmp, tmp2)
            dwdb = matrix([rtw - tmp2, rtb + blas.dot(mul(d2i, lt), rtt)])
            lapack.potrs(M, dwdb)

            # compute dt = inv(D2)*(rtt - Bb'*dw + lt*db)
            tmp2 = matrix(0.0, (k, 1))
            blas.gemv(Bb, dwdb[:n], tmp2, trans='T')
            dt = mul(d2i, rtt - tmp2 + lt * dwdb[-1])

            # compute dv = inv(Db)*(rbv + inv(Wl1)^2*(E*dt - D*X*dw - d*db))
            dv = matrix(0.0, (m, 1))
            blas.gemv(X, dwdb[:n], dv, alpha=-1.0)
            dv = mul(d, dv) - d * dwdb[-1]
            base.gemv(E, dt, dv, beta=1.0)
            tmp = +dv  # tmp = E*dt - D*X*dw - d*db
            dv = mul(dbi, rbv + mul(W['di'][:m]**2, dv))

            # compute wdz1 = inv(Wl1)*(E*dt - D*X*dw - d*db - dv - rl1)
            wdz1 = mul(W['di'][:m], tmp - dv) - iw_rl1

            # compute wdz2 = - inv(Wl2)*(dv + rl2)
            wdz2 = -mul(W['di'][m:2 * m], dv) - iw_rl2

            # compute wdzi = inv(Wi)*([-ei'*dt; -Pi*dw] - ri)
            wdzi = []
            tmp = matrix(0.0, (n, 1))
            for i in range(k):
                blas.gemv(P[i], dwdb[:n], tmp, alpha=-1.0, beta=0.0)
                tmp1 = matrix([-dt[i], tmp])
                blas.axpy(ri[i], tmp1, alpha=-1.0)
                qscal(tmp1, W['beta'][i], W['v'][i], inv=True)
                wdzi.append(tmp1)

            # solution
            x[:n] = dwdb[:n]
            x[n:n + k] = dt
            x[n + k] = dwdb[-1]
            x[n + k + 1:] = dv
            z[:m] = wdz1
            z[m:2 * m] = wdz2
            for i in range(k):
                z[2 * m + i * (n + 1):2 * m + (i + 1) * (n + 1)] = wdzi[i]

        return f
Ejemplo n.º 7
0
def solve(A, b, C, L, dims, proxqp=None, sigma=1.0, rho=1.0, **kwargs):
    """
    
    Solves the SDP

        min.  < c, x > 
        s.t.  A(x) = b
              x >= 0

    and its dual

        max.  -< b, y > 
        s.t.  s >= 0.
             c + A'(y) = s 
    
    
    Input arguments.
    
        A   is an N x M sparse matrix where N = sum_i ns[i]**2 and M = sum_j ms[j]
            and ns and ms are the SDP variable sizes and constraint block lengths respectively.
            
            The expression A(x) = b can be written as A.T*xtilde = b, where
            xtilde is a stacked vector of vectorized versions of xi.
        
        b   is a stacked vector containing constraint vectors of 
                        size m_i x 1.
    
        C   is a stacked vector containing vectorized 'd' matrices 
            c_k of size n_k**2 x 1, representing symmetric matrices.



        L  is an N X P sparse matrix, where L.T*X = 0 represents the consistency
            constraints. If an index k appears in different cliques i,j, and
            in converted form are indexed by it, jt, then L[it,l] = 1, 
            L[jt,l] = -1 for some l.
            
        dims    is a dictionary containing conic dimensions.
            dims['l'] contains number of linear variables under nonnegativity constrant
            dims['q'] contains a list of quadratic cone orders (not implemented!)
            dims['s'] contains a list of semidefinite cone matrix orders
        
        proxqp   is either a function pointer to a prox implementation, or, if 
                the problem has block-diagonal correlative sparsity, a pointer 
                to the prox implementation of a single clique. The choices are:
                
                proxqp_general : solves prox for general sparsity pattern
                
                proxqp_clique : solves prox for a single dense clique with 
                                only semidefinite variables.
                
                proxqp_clique_SNL : solves prox for sensor network localization 
                                    problem
        
        sigma is a nonnegative constant (step size)
        
        rho is a nonnegative constaint between 0 and 2 (overrelaxation parameter)
        
        In addition, the following paramters are optional:
        
            maxiter : maximum number of iterations (default 100)
            
            reltol : relative tolerance (default 0.01). 
                        If rp < reltol and rd < reltol and iteration < maxiter, 
                        solver breaks and returns current value.
                        
            adaptive : boolean toggle on whether adaptive step size should be 
                        used. (default False)
            
            mu, tau, tauscale : parameters for adaptive step size (see paper)

            multiprocess : number of parallel processes (default 1). 
                            if multiprocess = 1, no parallelization is used.
                            
            blockdiagonal : boolean toggle on whether problem has block diagonal
                            correlative sparsity. Note that even if the problem
                            does have block-diagonal correlative sparsity, if
                            this parameter is set to False, then general mode 
                            is used. (default False)
                            

            verbose : toggle printout (default True)
            
            log_cputime : toggle whether cputime should be logged.
	    
	    
    The output is returned in a dictionary with the following files:
        
        x : primal variable in stacked form (X = [x0, ..., x_{N-1}]) where
            xk is the vectorized form of the nk x nk submatrix variable.
        
        y, z : iterates in Spingarn's method
        
        cputime, walltime : total cputime and walltime, respectively, spent in 
                            main loop. If log_cputime is False, then cputime is 
                            returned as 0.
        
        primal, rprimal, rdual : evolution of primal optimal value, primal 
                                residual, and dual residual (resp.)
        
        sigma : evolution of step size sigma (changes if adaptive step size is used.)
    

    """

    solvers.options['show_progress'] = False
    maxiter = kwargs.get('maxiter', 100)
    reltol = kwargs.get('reltol', 0.01)
    adaptive = kwargs.get('adaptive', False)
    mu = kwargs.get('mu', 2.0)
    tau = kwargs.get('tau', 1.5)
    multiprocess = kwargs.get('multiprocess', 1)
    tauscale = kwargs.get('tauscale', 0.9)
    blockdiagonal = kwargs.get('blockdiagonal', False)
    verbose = kwargs.get('verbose', True)
    log_cputime = kwargs.get('log_cputime', True)

    if log_cputime:
        try:
            import psutil
        except (ImportError):
            assert False, "Python package psutil required to log cputime. Package can be downloaded at http://code.google.com/p/psutil/"

    #format variables
    nl, ns = dims['l'], dims['s']
    C = C[nl:]
    L = L[nl:, :]
    As, bs = [], []
    cons = []
    offset = 0
    for k in xrange(len(ns)):
        Atmp = sparse(A[nl + offset:nl + offset + ns[k]**2, :])
        J = list(set(list(Atmp.J)))
        Atmp = Atmp[:, J]
        if len(sparse(Atmp).V) == Atmp[:].size[0]: Atmp = matrix(Atmp)
        else: Atmp = sparse(Atmp)
        As.append(Atmp)
        bs.append(b[J])
        cons.append(J)

        offset += ns[k]**2

    if blockdiagonal:
        if sum([len(c) for c in cons]) > len(b):
            print "Problem does not have block-diagonal correlative sparsity. Switching to general mode."
            blockdiagonal = False

    #If not block-diagonal correlative sprasity, represent A as a list of lists:
    #   A[i][j] is a matrix (or spmatrix) if ith clique involves jth constraint block
    #Otherwise, A is a list of matrices, where A[i] involves the ith clique and
    #ith constraint block only.

    if not blockdiagonal:
        while sum([len(c) for c in cons]) > len(b):
            tobreak = False
            for i in xrange(len(cons)):
                for j in xrange(i):
                    ci, cj = set(cons[i]), set(cons[j])
                    s1 = ci.intersection(cj)
                    if len(s1) > 0:
                        s2 = ci.difference(cj)
                        s3 = cj.difference(ci)
                        cons.append(list(s1))
                        if len(s2) > 0:
                            s2 = list(s2)
                            if not (s2 in cons): cons.append(s2)
                        if len(s3) > 0:
                            s3 = list(s3)
                            if not (s3 in cons): cons.append(s3)

                        cons.pop(i)
                        cons.pop(j)
                        tobreak = True

                        break
                if tobreak: break

        As, bs = [], []
        for i in xrange(len(cons)):
            J = cons[i]
            bs.append(b[J])
            Acol = []
            offset = 0
            for k in xrange(len(ns)):
                Atmp = sparse(A[nl + offset:nl + offset + ns[k]**2, J])
                if len(Atmp.V) == 0:
                    Acol.append(0)
                elif len(Atmp.V) == Atmp[:].size[0]:
                    Acol.append(matrix(Atmp))
                else:
                    Acol.append(Atmp)
                offset += ns[k]**2
            As.append(Acol)

    ms = [len(i) for i in bs]
    bs = matrix(bs)
    meq = L.size[1]

    if (not blockdiagonal) and multiprocess > 1:
        print "Multiprocessing mode can only be used if correlative sparsity is block diagonal. Switching to sequential mode."
        multiprocess = 1

    assert rho > 0 and rho < 2, 'Overrelaxaton parameter (rho) must be (strictly) between 0 and 2'

    # create routine for projecting on { x | L*x = 0 }
    #{ x | L*x = 0 } -> P = I - L*(L.T*L)i *L.T
    LTL = spmatrix([], [], [], (meq, meq))
    offset = 0
    for k in ns:
        Lk = L[offset:offset + k**2, :]
        base.syrk(Lk, LTL, trans='T', beta=1.0)
        offset += k**2
    LTLi = cholmod.symbolic(LTL, amd.order(LTL))
    cholmod.numeric(LTL, LTLi)

    #y = y - L*LTLi*L.T*y
    nssq = sum(matrix([nsk**2 for nsk in ns]))

    def proj(y, ip=True):
        if not ip: y = +y
        tmp = matrix(0.0, size=(meq, 1))

        ypre = +y
        base.gemv(L,y,tmp,trans='T',\
            m = nssq, n = meq, beta = 1)

        cholmod.solve(LTLi, tmp)
        base.gemv(L,tmp,y,beta=1.0,alpha=-1.0,trans='N',\
            m = nssq, n = meq)
        if not ip: return y

    time_to_solve = 0

    #initialize variables
    X = C * 0.0
    Y = +X
    Z = +X
    dualS = +X
    dualy = +b
    PXZ = +X

    proxargs = {
        'C': C,
        'A': As,
        'b': bs,
        'Z': Z,
        'X': X,
        'sigma': sigma,
        'dualS': dualS,
        'dualy': dualy,
        'ns': ns,
        'ms': ms,
        'multiprocess': multiprocess
    }

    if blockdiagonal: proxqp = proxqp_blockdiagonal(proxargs, proxqp)
    else: proxqp = proxqp_general

    if log_cputime: utime = psutil.cpu_times()[0]
    wtime = time.time()
    primal = []
    rpvec, rdvec = [], []
    sigmavec = []
    for it in xrange(maxiter):
        pv, gap = proxqp(proxargs)

        blas.copy(Z, Y)
        blas.axpy(X, Y, alpha=-2.0)
        proj(Y, ip=True)

        #PXZ = sigma*(X-Z)
        blas.copy(X, PXZ)
        blas.scal(sigma, PXZ)
        blas.axpy(Z, PXZ, alpha=-sigma)

        #z = z + rho*(y-x)
        blas.axpy(X, Y, alpha=1.0)
        blas.axpy(Y, Z, alpha=-rho)

        xzn = blas.nrm2(PXZ)
        xn = blas.nrm2(X)
        xyn = blas.nrm2(Y)
        proj(PXZ, ip=True)

        rdual = blas.nrm2(PXZ)
        rpri = sqrt(abs(xyn**2 - rdual**2)) / sigma

        if log_cputime: cputime = psutil.cpu_times()[0] - utime
        else: cputime = 0

        walltime = time.time() - wtime

        if rpri / max(xn, 1.0) < reltol and rdual / max(1.0, xzn) < reltol:
            break

        rpvec.append(rpri / max(xn, 1.0))
        rdvec.append(rdual / max(1.0, xzn))
        primal.append(pv)
        if adaptive:
            if (rdual / xzn * mu < rpri / xn):
                sigmanew = sigma * tau
            elif (rpri / xn * mu < rdual / xzn):
                sigmanew = sigma / tau
            else:
                sigmanew = sigma
            if it % 10 == 0 and it > 0 and tau > 1.0:
                tauscale *= 0.9
                tau = 1 + (tau - 1) * tauscale
            sigma = max(min(sigmanew, 10.0), 0.1)
        sigmavec.append(sigma)
        if verbose:
            if log_cputime:
                print "%d: primal = %e, gap = %e, (rp,rd) = (%e,%e), sigma = %f, (cputime,walltime) = (%f, %f)" % (
                    it, pv, gap, rpri / max(xn, 1.0), rdual / max(1.0, xzn),
                    sigma, cputime, walltime)
            else:
                print "%d: primal = %e, gap = %e, (rp,rd) = (%e,%e), sigma = %f, walltime = %f" % (
                    it, pv, gap, rpri / max(xn, 1.0), rdual / max(1.0, xzn),
                    sigma, walltime)

    sol = {}
    sol['x'] = X
    sol['y'] = Y
    sol['z'] = Z
    sol['cputime'] = cputime
    sol['walltime'] = walltime
    sol['primal'] = primal
    sol['rprimal'] = rpvec
    sol['rdual'] = rdvec
    sol['sigma'] = sigmavec
    return sol
Ejemplo n.º 8
0
    def factor(W, H=None, Df=None):

        if F['firstcall']:
            if type(G) is matrix:
                F['Gs'] = matrix(0.0, G.size)
            else:
                F['Gs'] = spmatrix(0.0, G.I, G.J, G.size)
            if mnl:
                if type(Df) is matrix:
                    F['Dfs'] = matrix(0.0, Df.size)
                else:
                    F['Dfs'] = spmatrix(0.0, Df.I, Df.J, Df.size)
            if (mnl and type(Df) is matrix) or type(G) is matrix or \
                    type(H) is matrix:
                F['S'] = matrix(0.0, (n, n))
                F['K'] = matrix(0.0, (p, p))
            else:
                F['S'] = spmatrix([], [], [], (n, n), 'd')
                F['Sf'] = None
                if type(A) is matrix:
                    F['K'] = matrix(0.0, (p, p))
                else:
                    F['K'] = spmatrix([], [], [], (p, p), 'd')

        # Dfs = Wnl^{-1} * Df
        if mnl:
            base.gemm(spmatrix(W['dnli'], list(range(mnl)),
                               list(range(mnl))), Df, F['Dfs'], partial=True)

        # Gs = Wl^{-1} * G.
        base.gemm(spmatrix(W['di'], list(range(ml)), list(range(ml))),
                  G, F['Gs'], partial=True)

        if F['firstcall']:
            base.syrk(F['Gs'], F['S'], trans='T')
            if mnl:
                base.syrk(F['Dfs'], F['S'], trans='T', beta=1.0)
            if H is not None:
                F['S'] += H
            try:
                if type(F['S']) is matrix:
                    lapack.potrf(F['S'])
                else:
                    F['Sf'] = cholmod.symbolic(F['S'])
                    cholmod.numeric(F['S'], F['Sf'])
            except ArithmeticError:
                F['singular'] = True
                if type(A) is matrix and type(F['S']) is spmatrix:
                    F['S'] = matrix(0.0, (n, n))
                base.syrk(F['Gs'], F['S'], trans='T')
                if mnl:
                    base.syrk(F['Dfs'], F['S'], trans='T', beta=1.0)
                base.syrk(A, F['S'], trans='T', beta=1.0)
                if H is not None:
                    F['S'] += H
                if type(F['S']) is matrix:
                    lapack.potrf(F['S'])
                else:
                    F['Sf'] = cholmod.symbolic(F['S'])
                    cholmod.numeric(F['S'], F['Sf'])
            F['firstcall'] = False

        else:
            base.syrk(F['Gs'], F['S'], trans='T', partial=True)
            if mnl:
                base.syrk(F['Dfs'], F['S'], trans='T', beta=1.0,
                          partial=True)
            if H is not None:
                F['S'] += H
            if F['singular']:
                base.syrk(A, F['S'], trans='T', beta=1.0, partial=True)
            if type(F['S']) is matrix:
                lapack.potrf(F['S'])
            else:
                cholmod.numeric(F['S'], F['Sf'])

        if type(F['S']) is matrix:
            # Asct := L^{-1}*A'.  Factor K = Asct'*Asct.
            if type(A) is matrix:
                Asct = A.T
            else:
                Asct = matrix(A.T)
            blas.trsm(F['S'], Asct)
            blas.syrk(Asct, F['K'], trans='T')
            lapack.potrf(F['K'])

        else:
            # Asct := L^{-1}*P*A'.  Factor K = Asct'*Asct.
            if type(A) is matrix:
                Asct = A.T
                cholmod.solve(F['Sf'], Asct, sys=7)
                cholmod.solve(F['Sf'], Asct, sys=4)
                blas.syrk(Asct, F['K'], trans='T')
                lapack.potrf(F['K'])
            else:
                Asct = cholmod.spsolve(F['Sf'], A.T, sys=7)
                Asct = cholmod.spsolve(F['Sf'], Asct, sys=4)
                base.syrk(Asct, F['K'], trans='T')
                Kf = cholmod.symbolic(F['K'])
                cholmod.numeric(F['K'], Kf)

        def solve(x, y, z):

            # Solve
            #
            #     [ H          A'  GG'*W^{-1} ]   [ ux   ]   [ bx        ]
            #     [ A          0   0          ] * [ uy   ] = [ by        ]
            #     [ W^{-T}*GG  0   -I         ]   [ W*uz ]   [ W^{-T}*bz ]
            #
            # and return ux, uy, W*uz.
            #
            # If not F['singular']:
            #
            #     K*uy = A * S^{-1} * ( bx + GG'*W^{-1}*W^{-T}*bz ) - by
            #     S*ux = bx + GG'*W^{-1}*W^{-T}*bz - A'*uy
            #     W*uz = W^{-T} * ( GG*ux - bz ).
            #
            # If F['singular']:
            #
            #     K*uy = A * S^{-1} * ( bx + GG'*W^{-1}*W^{-T}*bz + A'*by )
            #            - by
            #     S*ux = bx + GG'*W^{-1}*W^{-T}*bz + A'*by - A'*y.
            #     W*uz = W^{-T} * ( GG*ux - bz ).

            # z := W^{-1} * z = W^{-1} * bz
            scale(z, W, trans='T', inverse='I')

            # If not F['singular']:
            #     x := L^{-1} * P * (x + GGs'*z)
            #        = L^{-1} * P * (x + GG'*W^{-1}*W^{-T}*bz)
            #
            # If F['singular']:
            #     x := L^{-1} * P * (x + GGs'*z + A'*y))
            #        = L^{-1} * P * (x + GG'*W^{-1}*W^{-T}*bz + A'*y)

            if mnl:
                base.gemv(F['Dfs'], z, x, trans='T', beta=1.0)
            base.gemv(F['Gs'], z, x, offsetx=mnl, trans='T',
                      beta=1.0)
            if F['singular']:
                base.gemv(A, y, x, trans='T', beta=1.0)
            if type(F['S']) is matrix:
                blas.trsv(F['S'], x)
            else:
                cholmod.solve(F['Sf'], x, sys=7)
                cholmod.solve(F['Sf'], x, sys=4)

            # y := K^{-1} * (Asc*x - y)
            #    = K^{-1} * (A * S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz) - by)
            #      (if not F['singular'])
            #    = K^{-1} * (A * S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz +
            #      A'*by) - by)
            #      (if F['singular']).

            base.gemv(Asct, x, y, trans='T', beta=-1.0)
            if type(F['K']) is matrix:
                lapack.potrs(F['K'], y)
            else:
                cholmod.solve(Kf, y)

            # x := P' * L^{-T} * (x - Asc'*y)
            #    = S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz - A'*y)
            #      (if not F['singular'])
            #    = S^{-1} * (bx + GG'*W^{-1}*W^{-T}*bz + A'*by - A'*y)
            #      (if F['singular'])

            base.gemv(Asct, y, x, alpha=-1.0, beta=1.0)
            if type(F['S']) is matrix:
                blas.trsv(F['S'], x, trans='T')
            else:
                cholmod.solve(F['Sf'], x, sys=5)
                cholmod.solve(F['Sf'], x, sys=8)

            # W*z := GGs*x - z = W^{-T} * (GG*x - bz)
            if mnl:
                base.gemv(F['Dfs'], x, z, beta=-1.0)
            base.gemv(F['Gs'], x, z, beta=-1.0, offsety=mnl)

        return solve
Ejemplo n.º 9
0
    def F(W): 
        """
        Custom solver for the system

        [  It  0   0    Xt'     0     At1' ...  Atk' ][ dwt  ]   [ rwt ]
        [  0   0   0    -d'     0      0   ...   0   ][ db   ]   [ rb  ]
        [  0   0   0    -I     -I      0   ...   0   ][ dv   ]   [ rv  ]
        [  Xt -d  -I  -Wl1^-2                        ][ dzl1 ]   [ rl1 ]
        [  0   0  -I         -Wl2^-2                 ][ dzl2 ] = [ rl2 ]
        [ At1  0   0                -W1^-2           ][ dz1  ]   [ r1  ] 
        [  |   |   |                       .         ][  |   ]   [  |  ]
        [ Atk  0   0                          -Wk^-2 ][ dzk  ]   [ rk  ]

        where

        It = [ I 0 ]  Xt = [ -D*X E ]  Ati = [ 0   -e_i' ]  
             [ 0 0 ]                         [ -Pi   0   ] 

        dwt = [ dw ]  rwt = [ rw ]
              [ dt ]        [ rt ].

        """

        # scalings and 'intermediate' vectors
        # db = inv(Wl1)^2 + inv(Wl2)^2
        db = W['di'][:m]**2 + W['di'][m:2*m]**2
        dbi = div(1.0,db)
        
        # dt = I - inv(Wl1)*Dbi*inv(Wl1)
        dt = 1.0 - mul(W['di'][:m]**2,dbi)
        dtsqrt = sqrt(dt)

        # lam = Dt*inv(Wl1)*d
        lam = mul(dt,mul(W['di'][:m],d))

        # lt = E'*inv(Wl1)*lam
        lt = matrix(0.0,(k,1))
        base.gemv(E, mul(W['di'][:m],lam), lt, trans = 'T')

        # Xs = sqrt(Dt)*inv(Wl1)*X
        tmp = mul(dtsqrt,W['di'][:m])
        Xs = spmatrix(tmp,range(m),range(m))*X

        # Es = D*sqrt(Dt)*inv(Wl1)*E
        Es = spmatrix(mul(d,tmp),range(m),range(m))*E

        # form Ab = I + sum((1/bi)^2*(Pi'*Pi + 4*(v'*v + 1)*Pi'*y*y'*Pi)) + Xs'*Xs
        #  and Bb = -sum((1/bi)^2*(4*ui*v'*v*Pi'*y*ei')) - Xs'*Es
        #  and D2 = Es'*Es + sum((1/bi)^2*(1+4*ui^2*(v'*v - 1))
        Ab = matrix(0.0,(n,n))
        Ab[::n+1] = 1.0
        base.syrk(Xs,Ab,trans = 'T', beta = 1.0)
        Bb = matrix(0.0,(n,k))
        Bb = -Xs.T*Es # inefficient!?
        D2 = spmatrix(0.0,range(k),range(k))
        base.syrk(Es,D2,trans = 'T', partial = True)
        d2 = +D2.V
        del D2
        py = matrix(0.0,(n,1))
        for i in range(k):
            binvsq = (1.0/W['beta'][i])**2
            Ab += binvsq*Pt[i]
            dvv = blas.dot(W['v'][i],W['v'][i])
            blas.gemv(P[i], W['v'][i][1:], py, trans = 'T', alpha = 1.0, beta = 0.0)
            blas.syrk(py, Ab, alpha = 4*binvsq*(dvv+1), beta = 1.0)
            Bb[:,i] -= 4*binvsq*W['v'][i][0]*dvv*py
            d2[i] += binvsq*(1+4*(W['v'][i][0]**2)*(dvv-1))
        
        d2i = div(1.0,d2)
        d2isqrt = sqrt(d2i)

        # compute a = alpha - lam'*inv(Wl1)*E*inv(D2)*E'*inv(Wl1)*lam
        alpha = blas.dot(lam,mul(W['di'][:m],d))
        tmp = matrix(0.0,(k,1))
        base.gemv(E,mul(W['di'][:m],lam), tmp, trans = 'T')
        tmp = mul(tmp, d2isqrt) #tmp = inv(D2)^(1/2)*E'*inv(Wl1)*lam
        a = alpha - blas.dot(tmp,tmp)

        # compute M12 = X'*D*inv(Wl1)*lam + Bb*inv(D2)*E'*inv(Wl1)*lam
        tmp = mul(tmp, d2isqrt)
        M12 = matrix(0.0,(n,1))
        blas.gemv(Bb,tmp,M12, alpha = 1.0)
        tmp = mul(d,mul(W['di'][:m],lam))
        blas.gemv(X,tmp,M12, trans = 'T', alpha = 1.0, beta = 1.0)

        # form and factor M
        sBb = Bb * spmatrix(d2isqrt,range(k), range(k)) 
        base.syrk(sBb, Ab, alpha = -1.0, beta = 1.0)
        M = matrix([[Ab, M12.T],[M12, a]])
        lapack.potrf(M)
        
        def f(x,y,z):
            
            # residuals
            rwt = x[:n+k]
            rb = x[n+k]
            rv = x[n+k+1:n+k+1+m]
            iw_rl1 = mul(W['di'][:m],z[:m])
            iw_rl2 = mul(W['di'][m:2*m],z[m:2*m])
            ri = [z[2*m+i*(n+1):2*m+(i+1)*(n+1)] for i in range(k)]
            
            # compute 'derived' residuals 
            # rbwt = rwt + sum(Ai'*inv(Wi)^2*ri) + [-X'*D; E']*inv(Wl1)^2*rl1
            rbwt = +rwt
            for i in range(k):
                tmp = +ri[i]
                qscal(tmp,W['beta'][i],W['v'][i],inv=True)
                qscal(tmp,W['beta'][i],W['v'][i],inv=True)
                rbwt[n+i] -= tmp[0]
                blas.gemv(P[i], tmp[1:], rbwt, trans = 'T', alpha = -1.0, beta = 1.0)
            tmp = mul(W['di'][:m],iw_rl1)
            tmp2 = matrix(0.0,(k,1))
            base.gemv(E,tmp,tmp2,trans='T')
            rbwt[n:] += tmp2
            tmp = mul(d,tmp) # tmp = D*inv(Wl1)^2*rl1
            blas.gemv(X,tmp,rbwt,trans='T', alpha = -1.0, beta = 1.0)
            
            # rbb = rb - d'*inv(Wl1)^2*rl1
            rbb = rb - sum(tmp)

            # rbv = rv - inv(Wl2)*rl2 - inv(Wl1)^2*rl1
            rbv = rv - mul(W['di'][m:2*m],iw_rl2) - mul(W['di'][:m],iw_rl1) 
            
            # [rtw;rtt] = rbwt + [-X'*D; E']*inv(Wl1)^2*inv(Db)*rbv 
            tmp = mul(W['di'][:m]**2, mul(dbi,rbv))
            rtt = +rbwt[n:] 
            base.gemv(E, tmp, rtt, trans = 'T', alpha = 1.0, beta = 1.0)
            rtw = +rbwt[:n]
            tmp = mul(d,tmp)
            blas.gemv(X, tmp, rtw, trans = 'T', alpha = -1.0, beta = 1.0)

            # rtb = rbb - d'*inv(Wl1)^2*inv(Db)*rbv
            rtb = rbb - sum(tmp)
            
            # solve M*[dw;db] = [rtw - Bb*inv(D2)*rtt; rtb + lt'*inv(D2)*rtt]
            tmp = mul(d2i,rtt)
            tmp2 = matrix(0.0,(n,1))
            blas.gemv(Bb,tmp,tmp2)
            dwdb = matrix([rtw - tmp2,rtb + blas.dot(mul(d2i,lt),rtt)]) 
            lapack.potrs(M,dwdb)

            # compute dt = inv(D2)*(rtt - Bb'*dw + lt*db)
            tmp2 = matrix(0.0,(k,1))
            blas.gemv(Bb, dwdb[:n], tmp2, trans='T')
            dt = mul(d2i, rtt - tmp2 + lt*dwdb[-1])

            # compute dv = inv(Db)*(rbv + inv(Wl1)^2*(E*dt - D*X*dw - d*db))
            dv = matrix(0.0,(m,1))
            blas.gemv(X,dwdb[:n],dv,alpha = -1.0)
            dv = mul(d,dv) - d*dwdb[-1]
            base.gemv(E, dt, dv, beta = 1.0)
            tmp = +dv  # tmp = E*dt - D*X*dw - d*db
            dv = mul(dbi, rbv + mul(W['di'][:m]**2,dv))

            # compute wdz1 = inv(Wl1)*(E*dt - D*X*dw - d*db - dv - rl1)
            wdz1 = mul(W['di'][:m], tmp - dv) - iw_rl1

            # compute wdz2 = - inv(Wl2)*(dv + rl2)
            wdz2 = - mul(W['di'][m:2*m],dv) - iw_rl2

            # compute wdzi = inv(Wi)*([-ei'*dt; -Pi*dw] - ri)
            wdzi = []
            tmp = matrix(0.0,(n,1))
            for i in range(k):
                blas.gemv(P[i],dwdb[:n],tmp, alpha = -1.0, beta = 0.0) 
                tmp1 = matrix([-dt[i],tmp])
                blas.axpy(ri[i],tmp1,alpha = -1.0)
                qscal(tmp1,W['beta'][i],W['v'][i],inv=True)
                wdzi.append(tmp1)

            # solution
            x[:n] = dwdb[:n]
            x[n:n+k] = dt
            x[n+k] = dwdb[-1]
            x[n+k+1:] = dv
            z[:m] = wdz1 
            z[m:2*m] = wdz2
            for i in range(k):
                z[2*m+i*(n+1):2*m+(i+1)*(n+1)] = wdzi[i]

        return f
Ejemplo n.º 10
0
Archivo: base.py Proyecto: cvxopt/smcp
    def solve_phase1(self,kktsolver='chol',MM = 1e5):
        """
        Solves primal Phase I problem using the feasible
        start solver.

        Returns primal feasible X.

        """
        from cvxopt import cholmod, amd
        k = 1e-3

        # compute Schur complement matrix
        Id = [i*(self.n+1) for i in range(self.n)]
        As = self._A[:,1:]
        As[Id,:] /= sqrt(2.0)

        M = spmatrix([],[],[],(self.m,self.m))
        base.syrk(As,M,trans='T')
        u = +self.b

        # compute least-norm solution
        F = cholmod.symbolic(M)
        cholmod.numeric(M,F)
        cholmod.solve(F,u)
        x = 0.5*self._A[:,1:]*u
        X0 = spmatrix(x[self.V[:].I],self.V.I,self.V.J,(self.n,self.n))

        # test feasibility
        p = amd.order(self.V)
        #Xc,Nf = chompack.embed(X0,p)
        #E = chompack.project(Xc,spmatrix(1.0,range(self.n),range(self.n)))
        symb = chompack.symbolic(self.V,p)
        Xc = chompack.cspmatrix(symb) + X0

        try:
            # L = chompack.completion(Xc)
            L = Xc.copy()
            chompack.completion(L)
            # least-norm solution is feasible
            return X0,None
        except:
            pass

        # create Phase I SDP object
        trA = matrix(0.0,(self.m+1,1))
        e = matrix(1.0,(self.n,1))
        Aa = self._A[Id,1:]
        base.gemv(Aa,e,trA,trans='T')
        trA[-1] = MM
        P1 = SDP()
        P1._A = misc.phase1_sdp(self._A,trA)
        P1._b = matrix([self.b-k*trA[:self.m],MM])
        P1._agg_sparsity()

        # find feasible starting point for Phase I problem
        tMIN = 0.0
        tMAX = 1.0
        while True:
            t = (tMIN+tMAX)/2.0
            #Xt = chompack.copy(Xc)
            #chompack.axpy(E,Xt,t)
            Xt = Xc.copy() + spmatrix(t,list(range(self.n)),list(range(self.n)))

            try:
                # L = chompack.completion(Xt)
                L = Xt.copy()
                chompack.completion(L)
                tMAX = t
                if tMAX - tMIN < 1e-1:
                    break
            except:
                tMAX *= 2.0
                tMIN = t

        tt = t + 1.0
        U = X0 + spmatrix(tt,list(range(self.n,)),list(range(self.n)))
        trU = sum(U[:][Id])

        Z0 = spdiag([U,spmatrix([tt+k,MM-trU],[0,1],[0,1],(2,2))])
        sol = P1.solve_feas(primalstart = {'x':Z0}, kktsolver = kktsolver)

        s = sol['x'][-2,-2] - k
        if s > 0:
            return None,P1
        else:

            sol.pop('y')
            sol.pop('s')
            X0 = sol.pop('x')[:self.n,:self.n]\
                - spmatrix(s,list(range(self.n)),list(range(self.n)))
            return X0,sol
Ejemplo n.º 11
0
    def solve_phase1(self, kktsolver='chol', MM=1e5):
        """
        Solves primal Phase I problem using the feasible 
        start solver.

        Returns primal feasible X.

        """
        from cvxopt import cholmod, amd
        k = 1e-3

        # compute Schur complement matrix
        Id = [i * (self.n + 1) for i in range(self.n)]
        As = self._A[:, 1:]
        As[Id, :] /= sqrt(2.0)

        M = spmatrix([], [], [], (self.m, self.m))
        base.syrk(As, M, trans='T')
        u = +self.b

        # compute least-norm solution
        F = cholmod.symbolic(M)
        cholmod.numeric(M, F)
        cholmod.solve(F, u)
        x = 0.5 * self._A[:, 1:] * u
        X0 = spmatrix(x[self.V[:].I], self.V.I, self.V.J, (self.n, self.n))

        # test feasibility
        p = amd.order(self.V)
        #Xc,Nf = chompack.embed(X0,p)
        #E = chompack.project(Xc,spmatrix(1.0,range(self.n),range(self.n)))
        symb = chompack.symbolic(self.V, p)
        Xc = chompack.cspmatrix(symb) + X0

        try:
            # L = chompack.completion(Xc)
            L = Xc.copy()
            chompack.completion(L)
            # least-norm solution is feasible
            return X0
        except:
            pass

        # create Phase I SDP object
        trA = matrix(0.0, (self.m + 1, 1))
        e = matrix(1.0, (self.n, 1))
        Aa = self._A[Id, 1:]
        base.gemv(Aa, e, trA, trans='T')
        trA[-1] = MM
        P1 = SDP()
        P1._A = misc.phase1_sdp(self._A, trA)
        P1._b = matrix([self.b - k * trA[:self.m], MM])
        P1._agg_sparsity()

        # find feasible starting point for Phase I problem
        tMIN = 0.0
        tMAX = 1.0
        while True:
            t = (tMIN + tMAX) / 2.0
            #Xt = chompack.copy(Xc)
            #chompack.axpy(E,Xt,t)
            Xt = Xc.copy() + spmatrix(t, range(self.n), range(self.n))

            try:
                # L = chompack.completion(Xt)
                L = Xt.copy()
                chompack.completion(L)
                tMAX = t
                if tMAX - tMIN < 1e-1:
                    break
            except:
                tMAX *= 2.0
                tMIN = t

        tt = t + 1.0
        U = X0 + spmatrix(tt, range(self.n, ), range(self.n))
        trU = sum(U[:][Id])

        Z0 = spdiag([U, spmatrix([tt + k, MM - trU], [0, 1], [0, 1], (2, 2))])
        sol = P1.solve_feas(primalstart={'x': Z0}, kktsolver=kktsolver)

        s = sol['x'][-2, -2] - k
        if s > 0:
            return None, P1
        else:

            sol.pop('y')
            sol.pop('s')
            X0 = sol.pop('x')[:self.n,:self.n]\
                - spmatrix(s,range(self.n),range(self.n))
            return X0, sol