Ejemplo n.º 1
0
def fco_swu(series):
    """FcoSwu metric returns the separative work units required for each 
    year in a simulation. This is written for simulations that 
    use the Bright-lite Fuel Fab (i.e., the U235 and U238 are given separately 
    in the FCO simulations, and the filtering is archetype-specific).
    """
    tools.raise_no_pyne('SWU Required could not be computed', HAVE_PYNE)
    mass = pd.merge(series[0].reset_index(), series[1].reset_index(),
            on=['ResourceId'], how='inner').set_index(['ObjId', 'TimeCreated', 'NucId'])
    swu = []
    prods = {}
    mass235 = {}
    m = mass[mass['Commodity'] == 'LWR Fuel']
    for (obj, _, nuc), value in m.iterrows():
        if 922320000 <= nuc <= 922390000:
            prods[obj] = prods.get(obj, 0.0) + value['Mass']
        if nuc == 922350000:
            mass235[obj] = value['Mass']
    x_feed = 0.0072
    x_tails = 0.0025
    for obj, m235 in mass235.items():
        x_prod = m235 / prods[obj]
        swu0 = enr.swu(x_feed, x_prod, x_tails, product=prods[obj]) / 1e6
        swu.append(swu0)
    m = m.groupby(level=['ObjId', 'TimeCreated'])['Mass'].sum()
    m = m.reset_index()
    # sum by years (12 time steps)
    swu = pd.DataFrame(data={'Year': m.TimeCreated.apply(lambda x: x//12),
                             'SWU': swu}, columns=['Year', 'SWU'])
    swu = swu.groupby('Year').sum()
    rtn = swu.reset_index()
    return rtn
Ejemplo n.º 2
0
def fco_swu(series):
    """FcoSwu metric returns the separative work units required for each 
    year in a 200-yr simulation. This is written for FCO databases that 
    use the Bright-lite (i.e., the U235 and U238 are given separately 
    in the FCO simulations).
    """
    tools.raise_no_pyne('SWU Required could not be computed', HAVE_PYNE)
    mass = pd.merge(series[0].reset_index(), series[1].reset_index(),
            on=['ResourceId'], how='inner').set_index(['ObjId', 'TimeCreated', 'NucId'])
    swu = []
    prods = {}
    mass235 = {}
    m = mass[mass['Commodity'] == 'LWR Fuel']
    for (obj, _, nuc), value in m.iterrows():
        if 922320000 <= nuc <= 922390000:
            prods[obj] = prods.get(obj, 0.0) + value['Mass']
        if nuc == 922350000:
            mass235[obj] = value['Mass']
    x_feed = 0.0072
    x_tails = 0.0025
    for obj, m235 in mass235.items():
        x_prod = m235 / prods[obj]
        swu0 = enr.swu(x_feed, x_prod, x_tails, product=prods[obj]) / 1e6
        swu.append(swu0)
    m = m.groupby(level=['ObjId', 'TimeCreated'])['Mass'].sum()
    m = m.reset_index()
    # sum by years (12 time steps)
    swu = pd.DataFrame(data={'Year': m.TimeCreated.apply(lambda x: x//12),
                             'SWU': swu}, columns=['Year', 'SWU'])
    swu = swu.groupby('Year').sum()
    rtn = swu.reset_index()
    return rtn
Ejemplo n.º 3
0
def fco_u_mined(mats, trans):
    """FcoUMined metric returns the uranium mined in tonnes for each year
    in a simulation. This is written for simulations that use the
    Bright-lite Fuel Fab (i.e., the U235 and U238 are given separately in the
    FCO simulations, and the filtering is archetype-specific).
    """
    tools.raise_no_pyne('U_Mined could not be computed', HAVE_PYNE)
    mass = pd.merge(mats, trans, on=['ResourceId'], how='inner')
    mass = mass.set_index(['ObjId', 'TimeCreated', 'NucId'])
    u = []
    prods = {}
    mass235 = {}
    m = mass[mass['Commodity'] == 'LWR Fuel']
    for (obj, _, nuc), value in m.iterrows():
        if 922320000 <= nuc <= 922390000:
            prods[obj] = prods.get(obj, 0.0) + value['Mass']
        if nuc == 922350000:
            mass235[obj] = value['Mass']
    x_feed = 0.0072
    x_tails = 0.0025
    for obj, m235 in mass235.items():
        x_prod = m235 / prods[obj]
        feed = enr.feed(x_feed, x_prod, x_tails, product=prods[obj]) / 1000
        u.append(feed)
    m = m.groupby(level=['ObjId', 'TimeCreated'])['Mass'].sum()
    m = m.reset_index()
    # sum by years (12 time steps)
    u = pd.DataFrame(data={
        'Year': m.TimeCreated.apply(lambda x: x // 12),
        'UMined': u
    },
                     columns=['Year', 'UMined'])
    u = u.groupby('Year').sum()
    rtn = u.reset_index()
    return rtn
Ejemplo n.º 4
0
def fco_u_mined(mats, trans):
    """FcoUMined metric returns the uranium mined in tonnes for each year
    in a simulation. This is written for simulations that use the
    Bright-lite Fuel Fab (i.e., the U235 and U238 are given separately in the
    FCO simulations, and the filtering is archetype-specific).
    """
    tools.raise_no_pyne('U_Mined could not be computed', HAVE_PYNE)
    mass = pd.merge(mats, trans, on=['ResourceId'], how='inner')
    mass = mass.set_index(['ObjId', 'TimeCreated', 'NucId'])
    u = []
    prods = {}
    mass235 = {}
    m = mass[mass['Commodity'] == 'LWR Fuel']
    for (obj, _, nuc), value in m.iterrows():
        if 922320000 <= nuc <= 922390000:
            prods[obj] = prods.get(obj, 0.0) + value['Mass']
        if nuc==922350000:
            mass235[obj] = value['Mass']
    x_feed = 0.0072
    x_tails = 0.0025
    for obj, m235 in mass235.items():
        x_prod = m235 / prods[obj]
        feed = enr.feed(x_feed, x_prod, x_tails, product=prods[obj]) / 1000
        u.append(feed)
    m = m.groupby(level=['ObjId', 'TimeCreated'])['Mass'].sum()
    m = m.reset_index()
    # sum by years (12 time steps)
    u = pd.DataFrame(data={'Year': m.TimeCreated.apply(lambda x: x//12),
                           'UMined': u}, columns=['Year', 'UMined'])
    u = u.groupby('Year').sum()
    rtn = u.reset_index()
    return rtn
Ejemplo n.º 5
0
def decay_heat(series):
    """Decay heat metric returns the instantaneous decay heat of a nuclide 
    in a material (Q value * activity) indexed by the SimId, QualId, 
    ResourceId, ObjId, TimeCreated, and NucId.
    """
    tools.raise_no_pyne('DecayHeat could not be computed', HAVE_PYNE)
    act = series[0]
    dh = []
    for (simid, qual, res, obj, time, nuc), a in act.iteritems():
        val = (data.MeV_per_MJ * a * data.q_val(nuc))
        dh.append(val)
    dh = pd.Series(dh, index=act.index)
    dh.name = 'DecayHeat'
    rtn = dh.reset_index()
    return rtn
Ejemplo n.º 6
0
def decay_heat(series):
    """Decay heat metric returns the instantaneous decay heat of a nuclide 
    in a material (Q value * activity) indexed by the SimId, QualId, 
    ResourceId, ObjId, TimeCreated, and NucId.
    """
    tools.raise_no_pyne('DecayHeat could not be computed', HAVE_PYNE)
    act = series[0]
    dh = []
    for (simid, qual, res, obj, time, nuc), a in act.iteritems():
        val = (data.MeV_per_MJ * a * data.q_val(nuc))
        dh.append(val)
    dh = pd.Series(dh, index=act.index)
    dh.name = 'DecayHeat'
    rtn = dh.reset_index()
    return rtn
Ejemplo n.º 7
0
def activity(series):
    """Activity metric returns the instantaneous activity of a nuclide 
    in a material (material mass * decay constant / atomic mass) 
    indexed by the SimId, QualId, ResourceId, ObjId, TimeCreated, and NucId.
    """
    tools.raise_no_pyne('Activity could not be computed', HAVE_PYNE)
    mass = series[0]
    act = []
    for (simid, qual, res, obj, time, nuc), m in mass.iteritems():
        val = (1000 * data.N_A * m * data.decay_const(nuc) \
              / data.atomic_mass(nuc))
        act.append(val)
    act = pd.Series(act, index=mass.index)
    act.name = 'Activity'
    rtn = act.reset_index()
    return rtn
Ejemplo n.º 8
0
def activity(series):
    """Activity metric returns the instantaneous activity of a nuclide 
    in a material (material mass * decay constant / atomic mass) 
    indexed by the SimId, QualId, ResourceId, ObjId, TimeCreated, and NucId.
    """
    tools.raise_no_pyne('Activity could not be computed', HAVE_PYNE)
    mass = series[0]
    act = []
    for (simid, qual, res, obj, time, nuc), m in mass.iteritems():
        val = (1000 * data.N_A * m * data.decay_const(nuc) \
              / data.atomic_mass(nuc))
        act.append(val)
    act = pd.Series(act, index=mass.index)
    act.name = 'Activity'
    rtn = act.reset_index()
    return rtn