Ejemplo n.º 1
0
def _process_and_eval_notebook(input_fn,
                               output_fn,
                               run_cells,
                               config,
                               timeout=20 * 60,
                               lang='python'):
    with open(input_fn, 'r') as f:
        md = f.read()
    nb = notebook.read_markdown(md)
    tab = config.tab
    if tab:
        # get the tab
        nb = notebook.split_markdown_cell(nb)
        nb = notebook.get_tab_notebook(nb, tab, config.default_tab)
        if not nb:
            logging.info(f"Skip to eval tab {tab} for {input_fn}")
            # write an empty file to track the dependencies
            open(output_fn, 'w')
            return
        # replace alias
        if tab in config.library:
            nb = library.replace_alias(nb, config.library[tab])

    # evaluate
    if run_cells:
        # change to the notebook directory to resolve the relpaths properly
        cwd = os.getcwd()
        os.chdir(os.path.join(cwd, os.path.dirname(output_fn)))
        notedown.run(nb, timeout)
        os.chdir(cwd)
    # write
    nb['metadata'].update({'language_info': {'name': lang}})
    with open(output_fn, 'w') as f:
        f.write(nbformat.writes(nb))
Ejemplo n.º 2
0
    def test_replace_alias(self):
        # Test https://github.com/d2l-ai/d2l-book/issues/14
        pairs = [  # before, after
            ('X = d2l.reshape(d2l.arange(10,20),(2,3))',
             'X = torch.arange(10, 20).reshape((2, 3))'),
            ('d2l.numpy(a)', 'a.detach().numpy()'),
            ('d2l.transpose(a)', 'a.t()'),
            ('metric.add(l * d2l.size(y), d2l.size(y))',
             'metric.add(l * y.numel(), y.numel())'),
            ('float(d2l.reduce_sum(cmp.astype(y.dtype)))',
             'float(cmp.astype(y.dtype).sum())'),
            ('d2l.numpy(nn.LeakyReLU(alpha)(x))',
             'nn.LeakyReLU(alpha)(x).detach().numpy()'),
            ('d2l.reshape(X_tile(1 - d2l.eye(n_train)).astype(\'bool\'), (1,2))',
             'X_tile(1 - torch.eye(n_train)).astype(\'bool\').reshape((1, 2))'
             ),
            ('float(d2l.reduce_sum(d2l.astype(cmp, y.dtype)))',
             'float(cmp.type(y.dtype).sum())'),
            ('\nenc_attention_weights = d2l.reshape(\n    d2l.concat(net.encoder.attention_weights, 0),\n    (num_layers, num_heads, -1, num_steps))\nenc_attention_weights.shape = 2\n',
             'enc_attention_weights = torch.cat(net.encoder.attention_weights, 0).reshape(\n    (num_layers, num_heads, -1, num_steps))\nenc_attention_weights.shape = 2'
             ),
            ('float(d2l.reduce_sum(d2l.abs(Y1 - Y2))) < 1e-6',
             'float(torch.abs(Y1 - Y2).sum()) < 1e-6'),
            ('d2l.plt.scatter(d2l.numpy(features[:, a + b]), d2l.numpy(labels), 1);',
             'd2l.plt.scatter(features[:, a + b].detach().numpy(),labels.detach().numpy(), 1);'
             ),
            ('d2l.reshape(multistep_preds[i - tau: i], (1, -1))',
             'multistep_preds[i - tau:i].reshape((1, -1))'),
            ('X = d2l.reshape(d2l.arange(16, dtype=d2l.float32), (1, 1, 4, 4))',
             'X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))'
             ),
            ('# comments\nX = d2l.reshape(a)', '# comments\nX = a.reshape()'),
            ('X = d2l.reshape(a)  # comments', 'X = a.reshape()  # comments'),
            ('Y[i, j] = d2l.reduce_sum((X[i: i + h, j: j + w] * K))',
             'Y[i, j] = (X[i:i + h, j:j + w] * K).sum()'),
            ('d2l.randn(size=(1,2)) * 0.01',
             'np.random.randn(size=(1,2)) * 0.01'),
             ('d2l.randn(size=(1,2), device=d2l.try_gpu()) * 0.01',
             'np.random.randn(size=(1,2), ctx=d2l.try_gpu()) * 0.01'
             ),
             
             ]

        for a, b in pairs:
            self.nb.cells[0].source = a
            nb = library.replace_alias(self.nb, self.tab_lib)
            compact = lambda x: x.replace('\n', '').replace(' ', '')
            self.assertEqual(compact(nb.cells[0].source), compact(b))
Ejemplo n.º 3
0
def _process_and_eval_notebook(input_fn,
                               output_fn,
                               run_cells,
                               config,
                               timeout=20 * 60,
                               lang='python'):
    with open(input_fn, 'r') as f:
        md = f.read()
    nb = notebook.read_markdown(md)
    tab = config.tab
    if tab:
        # get the tab
        nb = notebook.split_markdown_cell(nb)
        nb = notebook.get_tab_notebook(nb, tab, config.default_tab)
        if not nb:
            logging.info(f"Skip to eval tab {tab} for {input_fn}")
            # write an empty file to track the dependencies
            open(output_fn, 'w')
            return
        # replace alias
        if tab in config.library:
            nb = library.replace_alias(nb, config.library[tab])

    # evaluate
    if run_cells:
        # change to the notebook directory to resolve the relpaths properly
        cwd = os.getcwd()
        os.chdir(os.path.join(cwd, os.path.dirname(output_fn)))
        notedown.run(nb, timeout)
        os.chdir(cwd)
    # change stderr output to stdout output
    for cell in nb.cells:
        if cell.cell_type == 'code' and 'outputs' in cell:
            outputs = []
            for out in cell['outputs']:
                if ('data' in out and 'text/plain' in out['data']
                        and out['data']['text/plain'].startswith('HBox')):
                    # that's tqdm progress bar cannot displayed properly.
                    continue
                if 'name' in out and out['name'] == 'stderr':
                    out['name'] = 'stdout'
                outputs.append(out)
            cell['outputs'] = outputs
    # write
    nb['metadata'].update({'language_info': {'name': lang}})
    with open(output_fn, 'w') as f:
        f.write(nbformat.writes(nb))
Ejemplo n.º 4
0
def _process_and_eval_notebook(scheduler,
                               input_fn,
                               output_fn,
                               run_cells,
                               config,
                               timeout=20 * 60,
                               lang='python'):
    with open(input_fn, 'r') as f:
        md = f.read()
    nb = notebook.read_markdown(md)
    tab = config.tab
    if tab:
        # get the tab
        nb = notebook.split_markdown_cell(nb)
        nb = notebook.get_tab_notebook(nb, tab, config.default_tab)
        if not nb:
            logging.info(f"Skip to eval tab {tab} for {input_fn}")
            # write an empty file to track the dependencies
            open(output_fn, 'w')
            return
        # replace alias
        if tab in config.library:
            nb = library.replace_alias(nb, config.library[tab])
    nb = library.format_code_nb(nb)

    if not run_cells:
        logging.info(f'Converting {input_fn} to {output_fn}')
        _job(nb, output_fn, run_cells, timeout, lang)
    else:
        # use at most 2 gpus to eval a notebook
        num_gpus = resource.get_notebook_gpus(nb, 2)
        scheduler.add(1,
                      num_gpus,
                      target=_job,
                      args=(nb, output_fn, run_cells, timeout, lang),
                      description=f'Evaluating {input_fn}')