Ejemplo n.º 1
0
    def combine_nested_closures(self):
        # Remove previous nested closures if there are any
        # self.closure_arrays = {
        #     k: v
        #     for k, v in self.closure_arrays.items() if v[3] is False
        # }

        for _, child in self.nested_closures:
            for arrname, (_, desc, evaluator,
                          _) in sorted(child.closure_arrays.items()):

                # Check if the same array is already passed as part of a
                # nested closure
                arr = evaluator()
                if id(arr) in self.array_mapping:
                    continue

                new_name = data.find_new_name(arrname,
                                              self.closure_arrays.keys())
                if not desc.transient:
                    self.closure_arrays[new_name] = (arrname, desc, evaluator,
                                                     True)
                    self.array_mapping[id(arr)] = new_name

            for cbname, (_, cb, _) in sorted(child.callbacks.items()):
                new_name = data.find_new_name(cbname, self.callbacks.keys())
                self.callbacks[new_name] = (cbname, cb, True)
                self.array_mapping[id(cb)] = new_name
Ejemplo n.º 2
0
    def apply(self, outer_state: SDFGState, sdfg: SDFG):
        nsdfg_node = self.nested_sdfg
        nsdfg: SDFG = nsdfg_node.sdfg

        if nsdfg_node.schedule is not dtypes.ScheduleType.Default:
            infer_types.set_default_schedule_and_storage_types(
                nsdfg, nsdfg_node.schedule)

        #######################################################
        # Collect and update top-level SDFG metadata

        # Global/init/exit code
        for loc, code in nsdfg.global_code.items():
            sdfg.append_global_code(code.code, loc)
        for loc, code in nsdfg.init_code.items():
            sdfg.append_init_code(code.code, loc)
        for loc, code in nsdfg.exit_code.items():
            sdfg.append_exit_code(code.code, loc)

        # Environments
        for nstate in nsdfg.nodes():
            for node in nstate.nodes():
                if isinstance(node, nodes.CodeNode):
                    node.environments |= nsdfg_node.environments

        # Constants
        for cstname, cstval in nsdfg.constants.items():
            if cstname in sdfg.constants:
                if cstval != sdfg.constants[cstname]:
                    warnings.warn('Constant value mismatch for "%s" while '
                                  'inlining SDFG. Inner = %s != %s = outer' %
                                  (cstname, cstval, sdfg.constants[cstname]))
            else:
                sdfg.add_constant(cstname, cstval)

        # Symbols
        outer_symbols = {str(k): v for k, v in sdfg.symbols.items()}
        for ise in sdfg.edges():
            outer_symbols.update(ise.data.new_symbols(sdfg, outer_symbols))

        # Find original source/destination edges (there is only one edge per
        # connector, according to match)
        inputs: Dict[str, MultiConnectorEdge] = {}
        outputs: Dict[str, MultiConnectorEdge] = {}
        input_set: Dict[str, str] = {}
        output_set: Dict[str, str] = {}
        for e in outer_state.in_edges(nsdfg_node):
            inputs[e.dst_conn] = e
            input_set[e.data.data] = e.dst_conn
        for e in outer_state.out_edges(nsdfg_node):
            outputs[e.src_conn] = e
            output_set[e.data.data] = e.src_conn

        # Replace symbols using invocation symbol mapping
        # Two-step replacement (N -> __dacesym_N --> map[N]) to avoid clashes
        symbolic.safe_replace(nsdfg_node.symbol_mapping, nsdfg.replace_dict)

        # Access nodes that need to be reshaped
        # reshapes: Set(str) = set()
        # for aname, array in nsdfg.arrays.items():
        #     if array.transient:
        #         continue
        #     edge = None
        #     if aname in inputs:
        #         edge = inputs[aname]
        #         if len(array.shape) > len(edge.data.subset):
        #             reshapes.add(aname)
        #             continue
        #     if aname in outputs:
        #         edge = outputs[aname]
        #         if len(array.shape) > len(edge.data.subset):
        #             reshapes.add(aname)
        #             continue
        #     if edge is not None and not InlineMultistateSDFG._check_strides(
        #             array.strides, sdfg.arrays[edge.data.data].strides,
        #             edge.data, nsdfg_node):
        #         reshapes.add(aname)

        # Mapping from nested transient name to top-level name
        transients: Dict[str, str] = {}

        # All transients become transients of the parent (if data already
        # exists, find new name)
        for nstate in nsdfg.nodes():
            for node in nstate.nodes():
                if isinstance(node, nodes.AccessNode):
                    datadesc = nsdfg.arrays[node.data]
                    if node.data not in transients and datadesc.transient:
                        new_name = node.data
                        if (new_name in sdfg.arrays
                                or new_name in outer_symbols
                                or new_name in sdfg.constants):
                            new_name = f'{nsdfg.label}_{node.data}'

                        name = sdfg.add_datadesc(new_name,
                                                 datadesc,
                                                 find_new_name=True)
                        transients[node.data] = name

            # All transients of edges between code nodes are also added to parent
            for edge in nstate.edges():
                if (isinstance(edge.src, nodes.CodeNode)
                        and isinstance(edge.dst, nodes.CodeNode)):
                    if edge.data.data is not None:
                        datadesc = nsdfg.arrays[edge.data.data]
                        if edge.data.data not in transients and datadesc.transient:
                            new_name = edge.data.data
                            if (new_name in sdfg.arrays
                                    or new_name in outer_symbols
                                    or new_name in sdfg.constants):
                                new_name = f'{nsdfg.label}_{edge.data.data}'

                            name = sdfg.add_datadesc(new_name,
                                                     datadesc,
                                                     find_new_name=True)
                            transients[edge.data.data] = name

        #######################################################
        # Replace data on inlined SDFG nodes/edges

        # Replace data names with their top-level counterparts
        repldict = {}
        repldict.update(transients)
        repldict.update({
            k: v.data.data
            for k, v in itertools.chain(inputs.items(), outputs.items())
        })

        symbolic.safe_replace(repldict,
                              lambda m: replace_datadesc_names(nsdfg, m),
                              value_as_string=True)

        # Add views whenever reshapes are necessary
        # for dname in reshapes:
        #     desc = nsdfg.arrays[dname]
        #     # To avoid potential confusion, rename protected __return keyword
        #     if dname.startswith('__return'):
        #         newname = f'{nsdfg.name}_ret{dname[8:]}'
        #     else:
        #         newname = dname
        #     newname, _ = sdfg.add_view(newname,
        #                                desc.shape,
        #                                desc.dtype,
        #                                storage=desc.storage,
        #                                strides=desc.strides,
        #                                offset=desc.offset,
        #                                debuginfo=desc.debuginfo,
        #                                allow_conflicts=desc.allow_conflicts,
        #                                total_size=desc.total_size,
        #                                alignment=desc.alignment,
        #                                may_alias=desc.may_alias,
        #                                find_new_name=True)
        #     repldict[dname] = newname

        # Add extra access nodes for out/in view nodes
        # inv_reshapes = {repldict[r]: r for r in reshapes}
        # for nstate in nsdfg.nodes():
        #     for node in nstate.nodes():
        #         if isinstance(node,
        #                       nodes.AccessNode) and node.data in inv_reshapes:
        #             if nstate.in_degree(node) > 0 and nstate.out_degree(
        #                     node) > 0:
        #                 # Such a node has to be in the output set
        #                 edge = outputs[inv_reshapes[node.data]]

        #                 # Redirect outgoing edges through access node
        #                 out_edges = list(nstate.out_edges(node))
        #                 anode = nstate.add_access(edge.data.data)
        #                 vnode = nstate.add_access(node.data)
        #                 nstate.add_nedge(node, anode, edge.data)
        #                 nstate.add_nedge(anode, vnode, edge.data)
        #                 for e in out_edges:
        #                     nstate.remove_edge(e)
        #                     nstate.add_edge(vnode, e.src_conn, e.dst,
        #                                     e.dst_conn, e.data)

        # Make unique names for states
        statenames = set(s.label for s in sdfg.nodes())
        for nstate in nsdfg.nodes():
            if nstate.label in statenames:
                newname = data.find_new_name(nstate.label, statenames)
                statenames.add(newname)
                nstate.set_label(newname)

        #######################################################
        # Collect and modify interstate edges as necessary

        outer_assignments = set()
        for e in sdfg.edges():
            outer_assignments |= e.data.assignments.keys()

        inner_assignments = set()
        for e in nsdfg.edges():
            inner_assignments |= e.data.assignments.keys()

        assignments_to_replace = inner_assignments & outer_assignments
        sym_replacements: Dict[str, str] = {}
        allnames = set(outer_symbols.keys()) | set(sdfg.arrays.keys())
        for assign in assignments_to_replace:
            newname = data.find_new_name(assign, allnames)
            allnames.add(newname)
            sym_replacements[assign] = newname
        nsdfg.replace_dict(sym_replacements)

        #######################################################
        # Add nested SDFG states into top-level SDFG

        outer_start_state = sdfg.start_state

        sdfg.add_nodes_from(nsdfg.nodes())
        for ise in nsdfg.edges():
            sdfg.add_edge(ise.src, ise.dst, ise.data)

        #######################################################
        # Reconnect inlined SDFG

        source = nsdfg.start_state
        sinks = nsdfg.sink_nodes()

        # Reconnect state machine
        for e in sdfg.in_edges(outer_state):
            sdfg.add_edge(e.src, source, e.data)
        for e in sdfg.out_edges(outer_state):
            for sink in sinks:
                sdfg.add_edge(sink, e.dst, e.data)

        # Modify start state as necessary
        if outer_start_state is outer_state:
            sdfg.start_state = sdfg.node_id(source)

        # TODO: Modify memlets by offsetting
        # If both source and sink nodes are inputs/outputs, reconnect once
        # edges_to_ignore = self._modify_access_to_access(new_incoming_edges,
        #                                                 nsdfg, nstate, state,
        #                                                 orig_data)

        # source_to_outer = {n: e.src for n, e in new_incoming_edges.items()}
        # sink_to_outer = {n: e.dst for n, e in new_outgoing_edges.items()}
        # # If a source/sink node is one of the inputs/outputs, reconnect it,
        # # replacing memlets in outgoing/incoming paths
        # modified_edges = set()
        # modified_edges |= self._modify_memlet_path(new_incoming_edges, nstate,
        #                                            state, sink_to_outer, True,
        #                                            edges_to_ignore)
        # modified_edges |= self._modify_memlet_path(new_outgoing_edges, nstate,
        #                                            state, source_to_outer,
        #                                            False, edges_to_ignore)

        # # Reshape: add connections to viewed data
        # self._modify_reshape_data(reshapes, repldict, inputs, nstate, state,
        #                           True)
        # self._modify_reshape_data(reshapes, repldict, outputs, nstate, state,
        #                           False)

        # Modify all other internal edges pertaining to input/output nodes
        # for nstate in nsdfg.nodes():
        #     for node in nstate.nodes():
        #         if isinstance(node, nodes.AccessNode):
        #             if node.data in input_set or node.data in output_set:
        #                 if node.data in input_set:
        #                     outer_edge = inputs[input_set[node.data]]
        #                 else:
        #                     outer_edge = outputs[output_set[node.data]]

        #                 for edge in state.all_edges(node):
        #                     if (edge not in modified_edges
        #                             and edge.data.data == node.data):
        #                         for e in state.memlet_tree(edge):
        #                             if e.data.data == node.data:
        #                                 e._data = helpers.unsqueeze_memlet(
        #                                     e.data, outer_edge.data)

        # Replace nested SDFG parents with new SDFG
        for nstate in nsdfg.nodes():
            nstate.parent = sdfg
            for node in nstate.nodes():
                if isinstance(node, nodes.NestedSDFG):
                    node.sdfg.parent_sdfg = sdfg
                    node.sdfg.parent_nsdfg_node = node

        #######################################################
        # Remove nested SDFG and state
        sdfg.remove_node(outer_state)

        return nsdfg.nodes()