Ejemplo n.º 1
0
    def apply(self, sdfg):
        graph = sdfg.nodes()[self.state_id]
        in_array = self.in_array(sdfg)
        out_array = self.out_array(sdfg)
        in_desc = sdfg.arrays[in_array.data]
        out_desc = sdfg.arrays[out_array.data]

        # 1. Get edge e1 and extract subsets for arrays A and B
        e1 = graph.edges_between(in_array, out_array)[0]
        a1_subset, b_subset = _validate_subsets(e1, sdfg.arrays)

        # View connected to a view: simple case
        if (isinstance(in_desc, data.View)
                and isinstance(out_desc, data.View)):
            for e in graph.in_edges(in_array):
                new_memlet = copy.deepcopy(e.data)
                e.dst_subset = b_subset
                graph.add_edge(e.src, e.src_conn, out_array, e.dst_conn,
                               new_memlet)
            graph.remove_node(in_array)
            if in_array.data in sdfg.arrays:
                del sdfg.arrays[in_array.data]
            return

        # Find extraneous A or B subset dimensions
        a_dims_to_pop = []
        b_dims_to_pop = []
        bset = b_subset
        popped = []
        if a1_subset and b_subset and a1_subset.dims() != b_subset.dims():
            a_size = a1_subset.size_exact()
            b_size = b_subset.size_exact()
            if a1_subset.dims() > b_subset.dims():
                a_dims_to_pop = find_dims_to_pop(a_size, b_size)
            else:
                b_dims_to_pop = find_dims_to_pop(b_size, a_size)
                bset, popped = pop_dims(b_subset, b_dims_to_pop)

        from dace.libraries.standard import Reduce
        reduction = False
        for e in graph.in_edges(in_array):
            if isinstance(e.src, Reduce):
                reduction = True

        # If:
        # 1. A reduce node is involved;
        # 2. The memlet does not cover the removed array; or
        # 3. Dimensions are mismatching (all dimensions are popped);
        # create a view.
        if reduction or len(a_dims_to_pop) == len(in_desc.shape) or any(
                m != a for m, a in zip(a1_subset.size(), in_desc.shape)):
            self._make_view(sdfg, graph, in_array, out_array, e1, b_subset,
                            b_dims_to_pop)
            return

        # Validate that subsets are composable. If not, make a view
        try:
            for e2 in graph.in_edges(in_array):
                path = graph.memlet_tree(e2)
                wcr = e1.data.wcr
                wcr_nonatomic = e1.data.wcr_nonatomic
                for e3 in path:
                    # 2-a. Extract subsets for array B and others
                    other_subset, a3_subset = _validate_subsets(
                        e3, sdfg.arrays, dst_name=in_array.data)
                    # 2-b. Modify memlet to match array B.
                    dname = out_array.data
                    src_is_data = False
                    a3_subset.offset(a1_subset, negative=True)

                    if a3_subset and a_dims_to_pop:
                        aset, _ = pop_dims(a3_subset, a_dims_to_pop)
                    else:
                        aset = a3_subset

                    compose_and_push_back(bset, aset, b_dims_to_pop, popped)
        except (ValueError, NotImplementedError):
            self._make_view(sdfg, graph, in_array, out_array, e1, b_subset,
                            b_dims_to_pop)
            return

        # 2. Iterate over the e2 edges and traverse the memlet tree
        for e2 in graph.in_edges(in_array):
            path = graph.memlet_tree(e2)
            wcr = e1.data.wcr
            wcr_nonatomic = e1.data.wcr_nonatomic
            for e3 in path:
                # 2-a. Extract subsets for array B and others
                other_subset, a3_subset = _validate_subsets(
                    e3, sdfg.arrays, dst_name=in_array.data)
                # 2-b. Modify memlet to match array B.
                dname = out_array.data
                src_is_data = False
                a3_subset.offset(a1_subset, negative=True)

                if a3_subset and a_dims_to_pop:
                    aset, _ = pop_dims(a3_subset, a_dims_to_pop)
                else:
                    aset = a3_subset

                dst_subset = compose_and_push_back(bset, aset, b_dims_to_pop,
                                                   popped)
                # NOTE: This fixes the following case:
                # Tasklet ----> A[subset] ----> ... -----> A
                # Tasklet is not data, so it doesn't have an other subset.
                if isinstance(e3.src, nodes.AccessNode):
                    if e3.src.data == out_array.data:
                        dname = e3.src.data
                        src_is_data = True
                    src_subset = other_subset
                else:
                    src_subset = None

                subset = src_subset if src_is_data else dst_subset
                other_subset = dst_subset if src_is_data else src_subset
                e3.data.data = dname
                e3.data.subset = subset
                e3.data.other_subset = other_subset
                wcr = wcr or e3.data.wcr
                wcr_nonatomic = wcr_nonatomic or e3.data.wcr_nonatomic
                e3.data.wcr = wcr
                e3.data.wcr_nonatomic = wcr_nonatomic

            # 2-c. Remove edge and add new one
            graph.remove_edge(e2)
            e2.data.wcr = wcr
            e2.data.wcr_nonatomic = wcr_nonatomic
            graph.add_edge(e2.src, e2.src_conn, out_array, e2.dst_conn,
                           e2.data)

        # Finally, remove in_array node
        graph.remove_node(in_array)
        if in_array.data in sdfg.arrays:
            del sdfg.arrays[in_array.data]
Ejemplo n.º 2
0
    def apply(self, sdfg):
        def gnode(nname):
            return graph.nodes()[self.subgraph[nname]]

        graph = sdfg.nodes()[self.state_id]
        in_array = gnode(RedundantSecondArray._in_array)
        out_array = gnode(RedundantSecondArray._out_array)
        in_desc = sdfg.arrays[in_array.data]
        out_desc = sdfg.arrays[out_array.data]

        # We assume the following pattern: A -- e1 --> B -- e2 --> others

        # 1. Get edge e1 and extract subsets for arrays A and B
        e1 = graph.edges_between(in_array, out_array)[0]
        a_subset, b1_subset = _validate_subsets(e1, sdfg.arrays)

        # Find extraneous A or B subset dimensions
        a_dims_to_pop = []
        b_dims_to_pop = []
        aset = a_subset
        popped = []
        if a_subset and b1_subset and a_subset.dims() != b1_subset.dims():
            a_size = a_subset.size_exact()
            b_size = b1_subset.size_exact()
            if a_subset.dims() > b1_subset.dims():
                a_dims_to_pop = find_dims_to_pop(a_size, b_size)
                aset, popped = pop_dims(a_subset, a_dims_to_pop)
            else:
                b_dims_to_pop = find_dims_to_pop(b_size, a_size)

        # If the src subset does not cover the removed array, create a view.
        if a_subset and any(m != a
                            for m, a in zip(a_subset.size(), out_desc.shape)):
            # NOTE: We do not want to create another view, if the immediate
            # successors of out_array are views as well. We just remove it.
            out_successors_desc = [
                e.dst.desc(sdfg)
                if isinstance(e.dst, nodes.AccessNode) else None
                for e in graph.out_edges(out_array)
            ]
            if all([
                    desc and isinstance(desc, data.View)
                    for desc in out_successors_desc
            ]):
                for e in graph.out_edges(out_array):
                    _, b_subset = _validate_subsets(e, sdfg.arrays)
                    graph.add_edge(
                        in_array, None, e.dst, e.dst_conn,
                        mm.Memlet(in_array.data,
                                  subset=a_subset,
                                  other_subset=b_subset,
                                  wcr=e1.data.wcr,
                                  wcr_nonatomic=e1.data.wcr_nonatomic))
                    graph.remove_edge(e)
                graph.remove_edge(e1)
                graph.remove_node(out_array)
                if out_array.data in sdfg.arrays:
                    del sdfg.arrays[out_array.data]
                return
            view_strides = out_desc.strides
            if (a_dims_to_pop and len(a_dims_to_pop)
                    == len(in_desc.shape) - len(out_desc.shape)):
                view_strides = [
                    s for i, s in enumerate(in_desc.strides)
                    if i not in a_dims_to_pop
                ]
            sdfg.arrays[out_array.data] = data.View(
                out_desc.dtype, out_desc.shape, True, out_desc.allow_conflicts,
                in_desc.storage, in_desc.location, view_strides,
                out_desc.offset, in_desc.may_alias,
                dtypes.AllocationLifetime.Scope, out_desc.alignment,
                out_desc.debuginfo, out_desc.total_size)
            return

        # 2. Iterate over the e2 edges and traverse the memlet tree
        for e2 in graph.out_edges(out_array):
            path = graph.memlet_tree(e2)
            wcr = e1.data.wcr
            wcr_nonatomic = e1.data.wcr_nonatomic
            for e3 in path:
                # 2-a. Extract subsets for array B and others
                b3_subset, other_subset = _validate_subsets(
                    e3, sdfg.arrays, src_name=out_array.data)
                # 2-b. Modify memlet to match array A. Example:
                # A -- (0, a:b)/(c:c+b) --> B -- (c+d)/None --> others
                # A -- (0, a+d)/None --> others
                e3.data.data = in_array.data
                # (c+d) - (c:c+b) = (d)
                b3_subset.offset(b1_subset, negative=True)
                # (0, a:b)(d) = (0, a+d) (or offset for indices)

                if b3_subset and b_dims_to_pop:
                    bset, _ = pop_dims(b3_subset, b_dims_to_pop)
                else:
                    bset = b3_subset

                e3.data.subset = compose_and_push_back(aset, bset,
                                                       a_dims_to_pop, popped)
                # NOTE: This fixes the following case:
                # A ----> A[subset] ----> ... -----> Tasklet
                # Tasklet is not data, so it doesn't have an other subset.
                if isinstance(e3.dst, nodes.AccessNode):
                    e3.data.other_subset = other_subset
                else:
                    e3.data.other_subset = None
                wcr = wcr or e3.data.wcr
                wcr_nonatomic = wcr_nonatomic or e3.data.wcr_nonatomic
                e3.data.wcr = wcr
                e3.data.wcr_nonatomic = wcr_nonatomic

            # 2-c. Remove edge and add new one
            graph.remove_edge(e2)
            e2.data.wcr = wcr
            e2.data.wcr_nonatomic = wcr_nonatomic
            graph.add_edge(in_array, e2.src_conn, e2.dst, e2.dst_conn, e2.data)

        # Finally, remove out_array node
        graph.remove_node(out_array)
        if out_array.data in sdfg.arrays:
            del sdfg.arrays[out_array.data]
Ejemplo n.º 3
0
    def expand(self, sdfg: SDFG, graph: SDFGState, reduce_node):
        """ Splits the data dimension into an inner and outer dimension,
            where the inner dimension are the reduction axes and the
            outer axes the complement. Pushes the reduce inside a new
            map consisting of the complement axes.

        """

        # get out storage node, might be hidden behind view node
        out_data = graph.out_edges(reduce_node)[0].data
        out_storage_node = reduce_node
        while not isinstance(out_storage_node, nodes.AccessNode):
            out_storage_node = graph.out_edges(out_storage_node)[0].dst

        if isinstance(sdfg.data(out_storage_node.data), View):
            out_storage_node = graph.out_edges(out_storage_node)[0].dst
            while not isinstance(out_storage_node, nodes.AccessNode):
                out_storage_node = graph.out_edges(out_storage_node)[0].dst

        # get other useful quantities from the original reduce node
        wcr = reduce_node.wcr
        identity = reduce_node.identity
        implementation = reduce_node.implementation

        # remove the reduce identity, will get reassigned after expansion
        reduce_node.identity = None
        # expand the reduce node
        in_edge = graph.in_edges(reduce_node)[0]
        nsdfg = self._expand_reduce(sdfg, graph, reduce_node)
        # find the new nodes in the nested sdfg created
        nstate = nsdfg.sdfg.nodes()[0]
        for node, scope in nstate.scope_dict().items():
            if isinstance(node, nodes.MapEntry):
                if scope is None:
                    outer_entry = node
                else:
                    inner_entry = node
            if isinstance(node, nodes.Tasklet):
                tasklet_node = node

        inner_exit = nstate.exit_node(inner_entry)
        outer_exit = nstate.exit_node(outer_entry)

        # find earliest parent read-write occurrence of array onto which the reduction is performed: BFS

        if self.create_out_transient:
            queue = [nsdfg]
            enqueued = set()
            array_closest_ancestor = None

            while len(queue) > 0:
                current = queue.pop()
                if isinstance(current, nodes.AccessNode):
                    if current.data == out_storage_node.data:
                        # it suffices to find the first node
                        # no matter what access (ReadWrite or Read)
                        array_closest_ancestor = current
                        break
                for in_edge in graph.in_edges(current):
                    if in_edge.src not in enqueued:
                        queue.append(in_edge.src)
                        enqueued.add(in_edge.src)

            if self.debug and array_closest_ancestor:
                print(
                    f"ReduceExpansion::Closest ancestor={array_closest_ancestor}"
                )
            elif self.debug:
                print("ReduceExpansion::No closest ancestor found")

        if self.create_out_transient:
            # create an out transient between inner and outer map exit
            array_out = nstate.out_edges(outer_exit)[0].data.data

            from dace.transformation.dataflow.local_storage import LocalStorage, OutLocalStorage
            local_storage_subgraph = {
                LocalStorage.node_a:
                nsdfg.sdfg.nodes()[0].nodes().index(inner_exit),
                LocalStorage.node_b:
                nsdfg.sdfg.nodes()[0].nodes().index(outer_exit)
            }
            nsdfg_id = nsdfg.sdfg.sdfg_list.index(nsdfg.sdfg)
            nstate_id = 0
            local_storage = OutLocalStorage(nsdfg.sdfg, nsdfg_id, nstate_id,
                                            local_storage_subgraph, 0)
            local_storage.array = array_out
            local_storage.apply(nsdfg.sdfg.node(0), nsdfg.sdfg)
            out_transient_node_inner = local_storage._data_node

            # push to register
            nsdfg.sdfg.data(out_transient_node_inner.data
                            ).storage = dtypes.StorageType.Register

            # remove WCRs from all edges where possible if there is no
            # prior occurrence
            if array_closest_ancestor is None:
                nstate.out_edges(outer_exit)[0].data.wcr = None
                nstate.out_edges(out_transient_node_inner)[0].data.wcr = None
                nstate.out_edges(out_transient_node_inner)[0].data.volume = 1
        else:

            # remove WCR from outer exit
            nstate.out_edges(outer_exit)[0].data.wcr = None

        if self.create_in_transient:
            # create an in-transient between inner and outer map entry
            array_in = nstate.in_edges(outer_entry)[0].data.data

            from dace.transformation.dataflow.local_storage import LocalStorage, InLocalStorage
            local_storage_subgraph = {
                LocalStorage.node_a:
                nsdfg.sdfg.nodes()[0].nodes().index(outer_entry),
                LocalStorage.node_b:
                nsdfg.sdfg.nodes()[0].nodes().index(inner_entry)
            }

            nsdfg_id = nsdfg.sdfg.sdfg_list.index(nsdfg.sdfg)
            nstate_id = 0
            local_storage = InLocalStorage(nsdfg.sdfg, nsdfg_id, nstate_id,
                                           local_storage_subgraph, 0)
            local_storage.array = array_in
            local_storage.apply(nsdfg.sdfg.node(0), nsdfg.sdfg)
            in_transient_node_inner = local_storage._data_node

            # push to register
            nsdfg.sdfg.data(in_transient_node_inner.data
                            ).storage = dtypes.StorageType.Register

        # inline fuse back our nested SDFG
        from dace.transformation.interstate import InlineSDFG
        inline_sdfg = InlineSDFG(
            sdfg, sdfg.sdfg_id, sdfg.node_id(graph),
            {InlineSDFG.nested_sdfg: graph.node_id(nsdfg)}, 0)
        inline_sdfg.apply(graph, sdfg)

        new_schedule = dtypes.ScheduleType.Default
        new_implementation = self.reduce_implementation \
                             if self.reduce_implementation is not None \
                             else implementation
        new_axes = dcpy(reduce_node.axes)

        reduce_node_new = graph.add_reduce(wcr=wcr,
                                           axes=new_axes,
                                           schedule=new_schedule,
                                           identity=identity)
        reduce_node_new.implementation = new_implementation
        # replace inner map with new reduction node
        edge_tmp = graph.in_edges(inner_entry)[0]
        memlet_src_reduce = dcpy(edge_tmp.data)
        graph.add_edge(edge_tmp.src, edge_tmp.src_conn, reduce_node_new, None,
                       memlet_src_reduce)

        edge_tmp = graph.out_edges(inner_exit)[0]
        memlet_reduce_dst = Memlet(data=edge_tmp.data.data,
                                   volume=1,
                                   subset=edge_tmp.data.subset)

        graph.add_edge(reduce_node_new, None, edge_tmp.dst, edge_tmp.dst_conn,
                       memlet_reduce_dst)

        identity_tasklet = graph.out_edges(inner_entry)[0].dst
        graph.remove_node(inner_entry)
        graph.remove_node(inner_exit)
        graph.remove_node(identity_tasklet)

        # propagate scope for correct volumes
        scope_tree = ScopeTree(outer_entry, outer_exit)
        scope_tree.parent = ScopeTree(None, None)
        propagate_memlets_scope(sdfg, graph, scope_tree)
        sdfg.validate()

        # create variables for outside access
        self._reduce = reduce_node_new
        self._outer_entry = outer_entry

        if identity is None and self.create_out_transient:
            if self.debug:
                print(
                    "ReduceExpansion::Trying to infer reduction WCR type due to out transient created"
                )
            # set the reduction identity accordingly so that the correct
            # blank result is written to the out_transient node
            # we use default values deducted from the reduction type
            reduction_type = detect_reduction_type(wcr)
            try:
                reduce_node_new.identity = self.reduction_type_identity[
                    reduction_type]
            except KeyError:

                if reduction_type == dtypes.ReductionType.Min:
                    reduce_node_new.identity = dtypes.max_value(
                        sdfg.arrays[out_storage_node.data].dtype)
                elif reduction_type == dtypes.ReductionType.Max:
                    reduce_node_new.identity = dtypes.min_value(
                        sdfg.arrays[out_storage_node.data].dtype)
                else:
                    raise ValueError(f"Cannot infer reduction identity."
                                     "Please specify the identity of node"
                                     "{reduce_node_new}")

        return