Ejemplo n.º 1
0
def test_feedforward_theano_mix():
    minibatch_size = 100
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()

    X_sym, y_sym = add_datasets_to_graph([X, y], ["X", "y"], graph)

    l1_o = linear_layer([X_sym], graph, 'l1', proj_dim=20,
                        random_state=random_state)
    l1_o = .999 * l1_o
    y_pred = softmax_layer([l1_o], graph, 'pred', n_classes,
                           random_state=random_state)

    cost = categorical_crossentropy(y_pred, y_sym).mean()
    params, grads = get_params_and_grads(graph, cost)
    learning_rate = 0.001
    opt = sgd(params)
    updates = opt.updates(params, grads, learning_rate)

    fit_function = theano.function([X_sym, y_sym], [cost], updates=updates,
                                   mode="FAST_COMPILE")

    cost_function = theano.function([X_sym, y_sym], [cost],
                                    mode="FAST_COMPILE")

    checkpoint_dict = {}
    train_indices = np.arange(len(X))
    valid_indices = np.arange(len(X))
    early_stopping_trainer(fit_function, cost_function, checkpoint_dict, [X, y],
                           minibatch_size,
                           train_indices, valid_indices,
                           fit_function_output_names=["cost"],
                           cost_function_output_name="valid_cost",
                           n_epochs=1)
Ejemplo n.º 2
0
def test_batch_normalization():
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()
    X_sym, y_sym = add_datasets_to_graph([X, y], ["X", "y"], graph,
                                         list_of_test_values=[X, y])
    on_off = tensor.iscalar()
    on_off.tag.test_value = 1
    l1 = relu_layer([X_sym], graph, "proj", proj_dim=5,
                    batch_normalize=True, mode_switch=on_off,
                    random_state=random_state)
    l2 = relu_layer([l1], graph, "proj2", proj_dim=5,
                    batch_normalize=True, mode_switch=on_off,
                    random_state=random_state)
    f = theano.function([X_sym, on_off], [l2], mode="FAST_COMPILE")
    params, grads = get_params_and_grads(graph, l2.mean())
    opt = sgd(params, .1)
    updates = opt.updates(params, grads)
    train_f = theano.function([X_sym, on_off], [l2], mode="FAST_COMPILE",
                              updates=updates)
    valid_f = theano.function([X_sym, on_off], [l2], mode="FAST_COMPILE")
    X1 = random_state.rand(*X.shape)
    X2 = np.vstack([X1, .5 * X1])
    t1 = train_f(X1, 0)[0]
    t2 = valid_f(X1, 1)[0]
    t3 = train_f(X2, 0)[0]
    t4 = valid_f(X1, 1)[0]
    t5 = valid_f(X1, 1)[0]
    assert_almost_equal(t4, t5)
    assert_raises(AssertionError, assert_almost_equal, t2, t4)
Ejemplo n.º 3
0
def test_vae():
    minibatch_size = 100
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()

    X_sym, y_sym = add_datasets_to_graph([X, y], ["X", "y"], graph)

    l1_enc = relu_layer([X_sym, y_sym], graph, 'l1_enc', proj_dim=20,
                        random_state=random_state)
    mu = linear_layer([l1_enc], graph, 'mu', proj_dim=10,
                      random_state=random_state)
    log_sigma = linear_layer([l1_enc], graph, 'log_sigma', proj_dim=10,
                             random_state=random_state)
    samp = gaussian_log_sample_layer([mu], [log_sigma], graph,
                                     'gaussian_log_sample',
                                     random_state=random_state)
    l1_dec = relu_layer([samp], graph, 'l1_dec', proj_dim=20,
                        random_state=random_state)
    out = sigmoid_layer([l1_dec], graph, 'out', proj_dim=X.shape[1],
                        random_state=random_state)

    kl = gaussian_log_kl([mu], [log_sigma], graph, 'gaussian_kl').mean()
    cost = binary_crossentropy(out, X_sym).mean() + kl
    params, grads = get_params_and_grads(graph, cost)
    learning_rate = 0.001
    opt = sgd(params)
    updates = opt.updates(params, grads, learning_rate)

    train_function = theano.function([X_sym, y_sym], [cost], updates=updates,
                                     mode="FAST_COMPILE")

    iterate_function(train_function, [X, y], minibatch_size,
                     list_of_output_names=["cost"], n_epochs=1)
Ejemplo n.º 4
0
def test_tanh_rnn():
    # random state so script is deterministic
    random_state = np.random.RandomState(1999)
    # home of the computational graph
    graph = OrderedDict()

    # number of hidden features
    n_hid = 10
    # number of output_features = input_features
    n_out = X.shape[-1]

    # input (where first dimension is time)
    datasets_list = [X, X_mask, y, y_mask]
    names_list = ["X", "X_mask", "y", "y_mask"]
    test_values_list = [X, X_mask, y, y_mask]
    X_sym, X_mask_sym, y_sym, y_mask_sym = add_datasets_to_graph(
        datasets_list, names_list, graph, list_of_test_values=test_values_list)

    # Setup weights
    l1 = linear_layer([X_sym], graph, 'l1_proj', n_hid, random_state)

    h = tanh_recurrent_layer([l1], X_mask_sym, n_hid, graph, 'l1_rec',
                             random_state)

    # linear output activation
    y_hat = linear_layer([h], graph, 'l2_proj', n_out, random_state)

    # error between output and target
    cost = squared_error(y_hat, y_sym)
    cost = masked_cost(cost, y_mask_sym).mean()
    # Parameters of the model
    params, grads = get_params_and_grads(graph, cost)

    # Use stochastic gradient descent to optimize
    opt = sgd(params)
    learning_rate = 0.001
    updates = opt.updates(params, grads, learning_rate)

    fit_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                   [cost],
                                   updates=updates,
                                   mode="FAST_COMPILE")

    cost_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                    [cost],
                                    mode="FAST_COMPILE")
    checkpoint_dict = {}
    train_indices = np.arange(X.shape[1])
    valid_indices = np.arange(X.shape[1])
    early_stopping_trainer(fit_function,
                           cost_function,
                           checkpoint_dict, [X, y],
                           minibatch_size,
                           train_indices,
                           valid_indices,
                           fit_function_output_names=["cost"],
                           cost_function_output_name="valid_cost",
                           n_epochs=1)
Ejemplo n.º 5
0
def test_tanh_rnn():
    # random state so script is deterministic
    random_state = np.random.RandomState(1999)
    # home of the computational graph
    graph = OrderedDict()

    # number of hidden features
    n_hid = 10
    # number of output_features = input_features
    n_out = X.shape[-1]

    # input (where first dimension is time)
    datasets_list = [X, X_mask, y, y_mask]
    names_list = ["X", "X_mask", "y", "y_mask"]
    test_values_list = [X, X_mask, y, y_mask]
    X_sym, X_mask_sym, y_sym, y_mask_sym = add_datasets_to_graph(
        datasets_list, names_list, graph, list_of_test_values=test_values_list)

    # Setup weights
    l1 = linear_layer([X_sym], graph, 'l1_proj', proj_dim=n_hid,
                      random_state=random_state)

    h = tanh_recurrent_layer([l1], X_mask_sym, n_hid, graph, 'l1_rec',
                             random_state)

    # linear output activation
    y_hat = linear_layer([h], graph, 'l2_proj', proj_dim=n_out,
                         random_state=random_state)

    # error between output and target
    cost = squared_error(y_hat, y_sym)
    cost = masked_cost(cost, y_mask_sym).mean()
    # Parameters of the model
    params, grads = get_params_and_grads(graph, cost)

    # Use stochastic gradient descent to optimize
    learning_rate = 0.001
    opt = sgd(params, learning_rate)
    updates = opt.updates(params, grads)

    fit_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                   [cost], updates=updates, mode="FAST_COMPILE")

    cost_function = theano.function([X_sym, X_mask_sym, y_sym, y_mask_sym],
                                    [cost], mode="FAST_COMPILE")
    checkpoint_dict = {}
    train_indices = np.arange(X.shape[1])
    valid_indices = np.arange(X.shape[1])
    early_stopping_trainer(fit_function, cost_function,
                           train_indices, valid_indices,
                           checkpoint_dict,
                           [X, y], minibatch_size,
                           list_of_train_output_names=["cost"],
                           valid_output_name="valid_cost",
                           n_epochs=1)
Ejemplo n.º 6
0
def test_vae():
    minibatch_size = 10
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()

    X_sym = add_datasets_to_graph([X], ["X"], graph)

    l1_enc = softplus_layer([X_sym], graph, 'l1_enc', proj_dim=100,
                            random_state=random_state)
    mu = linear_layer([l1_enc], graph, 'mu', proj_dim=50,
                      random_state=random_state)
    log_sigma = linear_layer([l1_enc], graph, 'log_sigma', proj_dim=50,
                             random_state=random_state)
    samp = gaussian_log_sample_layer([mu], [log_sigma], graph,
                                     'gaussian_log_sample',
                                     random_state=random_state)
    l1_dec = softplus_layer([samp], graph, 'l1_dec', proj_dim=100,
                            random_state=random_state)
    out = sigmoid_layer([l1_dec], graph, 'out', proj_dim=X.shape[1],
                        random_state=random_state)

    kl = gaussian_log_kl([mu], [log_sigma], graph, 'gaussian_kl').mean()
    cost = binary_crossentropy(out, X_sym).mean() + kl
    params, grads = get_params_and_grads(graph, cost)
    learning_rate = 0.00000
    opt = sgd(params, learning_rate)
    updates = opt.updates(params, grads)

    fit_function = theano.function([X_sym], [cost], updates=updates,
                                   mode="FAST_COMPILE")

    cost_function = theano.function([X_sym], [cost],
                                    mode="FAST_COMPILE")

    checkpoint_dict = {}
    train_indices = np.arange(len(X))
    valid_indices = np.arange(len(X))
    early_stopping_trainer(fit_function, cost_function,
                           train_indices, valid_indices,
                           checkpoint_dict, [X],
                           minibatch_size,
                           list_of_train_output_names=["cost"],
                           valid_output_name="valid_cost",
                           n_epochs=1)
Ejemplo n.º 7
0
def test_feedforward_classifier():
    minibatch_size = 100
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()

    X_sym, y_sym = add_datasets_to_graph([X, y], ["X", "y"], graph)

    l1_o = linear_layer([X_sym], graph, "l1", proj_dim=20, random_state=random_state)
    y_pred = softmax_layer([l1_o], graph, "pred", n_classes, random_state=random_state)

    cost = categorical_crossentropy(y_pred, y_sym).mean()
    params, grads = get_params_and_grads(graph, cost)
    learning_rate = 0.001
    opt = sgd(params)
    updates = opt.updates(params, grads, learning_rate)

    train_function = theano.function([X_sym, y_sym], [cost], updates=updates, mode="FAST_COMPILE")

    iterate_function(train_function, [X, y], minibatch_size, list_of_output_names=["cost"], n_epochs=1)
Ejemplo n.º 8
0
def test_fixed_projection_layer():
    random_state = np.random.RandomState(1999)
    rand_projection = random_state.randn(64, 12)

    graph = OrderedDict()
    X_sym = add_datasets_to_graph([X], ["X"], graph)
    out = fixed_projection_layer([X_sym], rand_projection, graph, 'proj')
    out2 = fixed_projection_layer([X_sym],
                                  rand_projection,
                                  graph,
                                  'proj',
                                  pre=rand_projection[:, 0])
    out3 = fixed_projection_layer([X_sym],
                                  rand_projection,
                                  graph,
                                  'proj',
                                  post=rand_projection[0])
    final = linear_layer([out2],
                         graph,
                         'linear',
                         17,
                         random_state=random_state)
    # Test that it compiles with and without bias
    f = theano.function([X_sym], [out, out2, out3, final], mode="FAST_COMPILE")

    # Test updates
    params, grads = get_params_and_grads(graph, final.mean())
    opt = sgd(params)
    updates = opt.updates(params, grads, .1)
    f2 = theano.function([X_sym], [out2, final], updates=updates)
    ret = f(np.ones_like(X))[0]
    assert ret.shape[1] != X.shape[1]
    ret2 = f(np.ones_like(X))[1]
    assert ret.shape[1] != X.shape[1]
    out1, final1 = f2(X)
    out2, final2 = f2(X)

    # Make sure fixed basis is unchanged
    assert_almost_equal(out1, out2)

    # Make sure linear layer is updated
    assert_raises(AssertionError, assert_almost_equal, final1, final2)
Ejemplo n.º 9
0
def test_fixed_projection_layer():
    random_state = np.random.RandomState(1999)
    rand_projection = random_state.randn(64, 12)

    graph = OrderedDict()
    X_sym = add_datasets_to_graph([X], ["X"], graph)
    out = fixed_projection_layer([X_sym], rand_projection,
                                 graph, 'proj')
    out2 = fixed_projection_layer([X_sym], rand_projection,
                                  graph, 'proj',
                                  pre=rand_projection[:, 0])
    out3 = fixed_projection_layer([X_sym], rand_projection,
                                  graph, 'proj',
                                  post=rand_projection[0])
    final = linear_layer([out2], graph, 'linear', 17,
                         random_state=random_state)
    # Test that it compiles with and without bias
    f = theano.function([X_sym], [out, out2, out3, final],
                        mode="FAST_COMPILE")

    # Test updates
    params, grads = get_params_and_grads(
        graph, final.mean())
    opt = sgd(params, .1)
    updates = opt.updates(params, grads)
    f2 = theano.function([X_sym], [out2, final],
                         updates=updates)
    ret = f(np.ones_like(X))[0]
    assert ret.shape[1] != X.shape[1]
    ret2 = f(np.ones_like(X))[1]
    assert ret.shape[1] != X.shape[1]
    out1, final1 = f2(X)
    out2, final2 = f2(X)

    # Make sure fixed basis is unchanged
    assert_almost_equal(out1, out2)

    # Make sure linear layer is updated
    assert_raises(AssertionError, assert_almost_equal, final1, final2)
Ejemplo n.º 10
0
def test_correlated_mixture_density():
    # graph holds information necessary to build layers from parents
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()
    X_sym, y_sym = add_datasets_to_graph([bernoulli_X, bernoulli_y], ["X", "y"],
                                         graph)
    n_hid = 20
    minibatch_size = len(bernoulli_X)
    train_indices = np.arange(len(bernoulli_X))
    valid_indices = np.arange(len(bernoulli_X))

    l1 = tanh_layer([X_sym], graph, 'l1', proj_dim=n_hid,
                    random_state=random_state)
    rval = bernoulli_and_correlated_log_gaussian_mixture_layer(
        [l1], graph, 'hw', proj_dim=2, n_components=3,
        random_state=random_state)
    binary, coeffs, mus, log_sigmas, corr = rval
    cost = bernoulli_and_correlated_log_gaussian_mixture_cost(
        binary, coeffs, mus, log_sigmas, corr, y_sym).mean()
    params, grads = get_params_and_grads(graph, cost)

    learning_rate = 1E-6
    opt = sgd(params, learning_rate)
    updates = opt.updates(params, grads)

    fit_function = theano.function([X_sym, y_sym], [cost], updates=updates,
                                   mode="FAST_COMPILE")
    cost_function = theano.function([X_sym, y_sym], [cost],
                                    mode="FAST_COMPILE")

    checkpoint_dict = create_checkpoint_dict(locals())

    epoch_results = fixed_n_epochs_trainer(
        fit_function, cost_function, train_indices, valid_indices,
        checkpoint_dict, [bernoulli_X, bernoulli_y],
        minibatch_size,
        list_of_train_output_names=["train_cost"],
        valid_output_name="valid_cost",
        n_epochs=1)
Ejemplo n.º 11
0
minibatch_size = 20
n_hid = 1000

l1 = relu_layer([X_sym],
                graph,
                'l1',
                proj_dim=n_hid,
                random_state=random_state)
y_pred = softmax_zeros_layer([l1], graph, 'y_pred', proj_dim=n_targets)
nll = categorical_crossentropy(y_pred, y_sym).mean()
weights = get_weights_from_graph(graph)
L2 = sum([(w**2).sum() for w in weights])
cost = nll + .0001 * L2

params, grads = get_params_and_grads(graph, cost)

learning_rate = 1E-4
momentum = 0.95
opt = rmsprop(params, learning_rate, momentum)
updates = opt.updates(params, grads)

fit_function = theano.function([X_sym, y_sym], [cost], updates=updates)
cost_function = theano.function([X_sym, y_sym], [cost])
predict_function = theano.function([X_sym], [y_pred])

checkpoint_dict = create_checkpoint_dict(locals())


def error(*args):
    xargs = args[:-1]
Ejemplo n.º 12
0
code_log_sigma = linear_layer([l2_enc], graph, 'code_log_sigma', n_code,
                              random_state)
kl = gaussian_log_kl([code_mu], [code_log_sigma], graph, 'kl').mean()
samp = gaussian_log_sample_layer([code_mu], [code_log_sigma], graph, 'samp',
                                 random_state)

# decode path aka p
l1_dec = softplus_layer([samp], graph, 'l1_dec',  n_dec_layer[0], random_state)
l2_dec = softplus_layer([l1_dec], graph, 'l2_dec', n_dec_layer[1], random_state)
out = linear_layer([l2_dec], graph, 'out', n_input, random_state)

nll = squared_error(out, X_sym).mean()
# log p(x) = -nll so swap sign
# want to minimize cost in optimization so multiply by -1
cost = -1 * (-nll - kl)
params, grads = get_params_and_grads(graph, cost)

learning_rate = 0.0003
opt = adam(params)
updates = opt.updates(params, grads, learning_rate)

# Checkpointing
try:
    checkpoint_dict = load_last_checkpoint()
    fit_function = checkpoint_dict["fit_function"]
    cost_function = checkpoint_dict["cost_function"]
    encode_function = checkpoint_dict["encode_function"]
    decode_function = checkpoint_dict["decode_function"]
    previous_epoch_results = checkpoint_dict["previous_epoch_results"]
except KeyError:
    fit_function = theano.function([X_sym], [nll, kl, nll + kl],
Ejemplo n.º 13
0
def test_loop():
    # graph holds information necessary to build layers from parents
    graph = OrderedDict()
    X_sym, y_sym = add_datasets_to_graph([X, y], ["X", "y"], graph)
    # random state so script is deterministic
    random_state = np.random.RandomState(1999)

    minibatch_size = 10

    y_pred = softmax_zeros_layer([X_sym], graph, "y_pred", proj_dim=n_targets)
    nll = categorical_crossentropy(y_pred, y_sym).mean()
    weights = get_weights_from_graph(graph)
    cost = nll

    params, grads = get_params_and_grads(graph, cost)

    learning_rate = 0.13
    opt = sgd(params, learning_rate)
    updates = opt.updates(params, grads)

    fit_function = theano.function([X_sym, y_sym], [cost], updates=updates)
    cost_function = theano.function([X_sym, y_sym], [cost])
    predict_function = theano.function([X_sym], [y_pred])

    checkpoint_dict = {
        "fit_function": fit_function,
        "cost_function": cost_function,
        "predict_function": predict_function,
    }

    def error(*args):
        xargs = args[:-1]
        y = args[-1]
        final_args = xargs
        y_pred = predict_function(*final_args)[0]
        return 1 - np.mean((np.argmax(y_pred, axis=1).ravel()) == (np.argmax(y, axis=1).ravel()))

    TL1 = TrainingLoop(
        fit_function,
        error,
        train_indices[:10],
        valid_indices[:10],
        minibatch_size,
        checkpoint_dict=checkpoint_dict,
        list_of_train_output_names=["train_cost"],
        valid_output_name="valid_error",
        n_epochs=1,
        optimizer_object=opt,
    )
    epoch_results1 = TL1.run([X, y])
    TL1.train_indices = train_indices[10:20]
    TL1.valid_indices = valid_indices[10:20]
    epoch_results1 = TL1.run([X, y])

    TL2 = TrainingLoop(
        fit_function,
        error,
        train_indices[:20],
        valid_indices[:20],
        minibatch_size,
        checkpoint_dict=checkpoint_dict,
        list_of_train_output_names=["train_cost"],
        valid_output_name="valid_error",
        n_epochs=1,
        optimizer_object=opt,
    )
    epoch_results2 = TL2.run([X, y])

    r1 = TL1.__dict__["checkpoint_dict"]["previous_results"]["train_cost"][-1]
    r2 = TL2.__dict__["checkpoint_dict"]["previous_results"]["train_cost"][-1]
    assert r1 == r2
Ejemplo n.º 14
0
def test_vae():
    minibatch_size = 10
    random_state = np.random.RandomState(1999)
    graph = OrderedDict()

    X_sym = add_datasets_to_graph([X], ["X"], graph)

    l1_enc = softplus_layer([X_sym],
                            graph,
                            'l1_enc',
                            proj_dim=100,
                            random_state=random_state)
    mu = linear_layer([l1_enc],
                      graph,
                      'mu',
                      proj_dim=50,
                      random_state=random_state)
    log_sigma = linear_layer([l1_enc],
                             graph,
                             'log_sigma',
                             proj_dim=50,
                             random_state=random_state)
    samp = gaussian_log_sample_layer([mu], [log_sigma],
                                     graph,
                                     'gaussian_log_sample',
                                     random_state=random_state)
    l1_dec = softplus_layer([samp],
                            graph,
                            'l1_dec',
                            proj_dim=100,
                            random_state=random_state)
    out = sigmoid_layer([l1_dec],
                        graph,
                        'out',
                        proj_dim=X.shape[1],
                        random_state=random_state)

    kl = gaussian_log_kl([mu], [log_sigma], graph, 'gaussian_kl').mean()
    cost = binary_crossentropy(out, X_sym).mean() + kl
    params, grads = get_params_and_grads(graph, cost)
    learning_rate = 0.00000
    opt = sgd(params)
    updates = opt.updates(params, grads, learning_rate)

    fit_function = theano.function([X_sym], [cost],
                                   updates=updates,
                                   mode="FAST_COMPILE")

    cost_function = theano.function([X_sym], [cost], mode="FAST_COMPILE")

    checkpoint_dict = {}
    train_indices = np.arange(len(X))
    valid_indices = np.arange(len(X))
    early_stopping_trainer(fit_function,
                           cost_function,
                           checkpoint_dict, [X],
                           minibatch_size,
                           train_indices,
                           valid_indices,
                           fit_function_output_names=["cost"],
                           cost_function_output_name="valid_cost",
                           n_epochs=1)