Ejemplo n.º 1
0
def test_meta_from_array_literal(meta, dtype):
    if dtype is None:
        assert meta_from_array(meta, dtype=dtype).dtype.kind in "SU"
    else:
        assert (
            meta_from_array(meta, dtype=dtype).dtype == np.array([], dtype=dtype).dtype
        )
Ejemplo n.º 2
0
Archivo: wrap.py Proyecto: m-rossi/dask
def wrap_func_like(func, *args, **kwargs):
    """
    Transform np creation function into blocked version
    """
    x = args[0]
    meta = meta_from_array(x)
    shape = kwargs.get("shape", x.shape)

    parsed = _parse_wrap_args(func, args, kwargs, shape)
    shape = parsed["shape"]
    dtype = parsed["dtype"]
    chunks = parsed["chunks"]
    name = parsed["name"]
    kwargs = parsed["kwargs"]

    keys = product([name], *[range(len(bd)) for bd in chunks])
    shapes = product(*chunks)
    shapes = list(shapes)
    kw = [kwargs for _ in shapes]
    for i, s in enumerate(list(shapes)):
        kw[i]["shape"] = s
    vals = ((partial(func, dtype=dtype, **k), ) + args
            for (k, s) in zip(kw, shapes))

    dsk = dict(zip(keys, vals))

    return Array(dsk, name, chunks, meta=meta.astype(dtype))
Ejemplo n.º 3
0
def diag(v, k=0):
    if not isinstance(v, np.ndarray) and not isinstance(v, Array):
        raise TypeError(
            f"v must be a dask array or numpy array, got {type(v)}")

    name = "diag-" + tokenize(v, k)

    meta = meta_from_array(v, 2 if v.ndim == 1 else 1)

    if isinstance(v, np.ndarray) or (hasattr(v, "__array_function__")
                                     and not isinstance(v, Array)):
        if v.ndim == 1:
            m = abs(k)
            chunks = ((v.shape[0] + m, ), (v.shape[0] + m, ))
            dsk = {(name, 0, 0): (np.diag, v, k)}
        elif v.ndim == 2:
            kdiag_row_start = max(0, -k)
            kdiag_row_stop = min(v.shape[0], v.shape[1] - k)
            len_kdiag = kdiag_row_stop - kdiag_row_start
            chunks = ((0, ), ) if len_kdiag <= 0 else ((len_kdiag, ), )
            dsk = {(name, 0): (np.diag, v, k)}
        else:
            raise ValueError("Array must be 1d or 2d only")
        return Array(dsk, name, chunks, meta=meta)

    if v.ndim != 1:
        if v.ndim != 2:
            raise ValueError("Array must be 1d or 2d only")
        if k == 0 and v.chunks[0] == v.chunks[1]:
            dsk = {(name, i): (np.diag, row[i])
                   for i, row in enumerate(v.__dask_keys__())}
            graph = HighLevelGraph.from_collections(name,
                                                    dsk,
                                                    dependencies=[v])
            return Array(graph, name, (v.chunks[0], ), meta=meta)
        else:
            return diagonal(v, k)

    if k == 0:
        chunks_1d = v.chunks[0]
        blocks = v.__dask_keys__()
        dsk = {}
        for i, m in enumerate(chunks_1d):
            for j, n in enumerate(chunks_1d):
                key = (name, i, j)
                if i == j:
                    dsk[key] = (np.diag, blocks[i])
                else:
                    dsk[key] = (np.zeros, (m, n))
                    dsk[key] = (partial(np.zeros_like, shape=(m, n)), meta)

        graph = HighLevelGraph.from_collections(name, dsk, dependencies=[v])
        return Array(graph, name, (chunks_1d, chunks_1d), meta=meta)

    elif k > 0:
        return pad(diag(v), [[0, k], [k, 0]], mode="constant")
    elif k < 0:
        return pad(diag(v), [[-k, 0], [0, -k]], mode="constant")
Ejemplo n.º 4
0
def test_meta_from_array_type_inputs():
    x = meta_from_array(np.ndarray, ndim=2, dtype=np.float32)
    assert isinstance(x, np.ndarray)
    assert x.ndim == 2
    assert x.dtype == np.float32

    x = da.Array({('x', 0, 0): (np.ones, (5, 5))},
                 name='x',
                 chunks=(5, 5),
                 shape=(5, 5),
                 meta=np.ndarray,
                 dtype=np.float)
    assert_eq(x, x)

    assert da.from_array(np.ones(5).astype(np.int32),
                         meta=np.ndarray).dtype == np.int32
Ejemplo n.º 5
0
def slice_with_int_dask_array(x, idx, offset, x_size, axis):
    """Chunk function of `slice_with_int_dask_array_on_axis`.
    Slice one chunk of x by one chunk of idx.

    Parameters
    ----------
    x: ndarray, any dtype, any shape
        i-th chunk of x
    idx: ndarray, ndim=1, dtype=any integer
        j-th chunk of idx (cartesian product with the chunks of x)
    offset: ndarray, shape=(1, ), dtype=int64
        Index of the first element along axis of the current chunk of x
    x_size: int
        Total size of the x da.Array along axis
    axis: int
        normalized axis to take elements from (0 <= axis < x.ndim)

    Returns
    -------
    x sliced along axis, using only the elements of idx that fall inside the
    current chunk.
    """
    from dask.array.utils import asarray_safe, meta_from_array

    idx = asarray_safe(idx, like=meta_from_array(x))

    # Needed when idx is unsigned
    idx = idx.astype(np.int64)

    # Normalize negative indices
    idx = np.where(idx < 0, idx + x_size, idx)

    # A chunk of the offset dask Array is a numpy array with shape (1, ).
    # It indicates the index of the first element along axis of the current
    # chunk of x.
    idx = idx - offset

    # Drop elements of idx that do not fall inside the current chunk of x
    idx_filter = (idx >= 0) & (idx < x.shape[axis])
    idx = idx[idx_filter]

    # np.take does not support slice indices
    # return np.take(x, idx, axis)
    return x[tuple(idx if i == axis else slice(None) for i in range(x.ndim))]
Ejemplo n.º 6
0
def make_meta(obj):
    """If obj is a DataArray or Dataset, return a new object of the same type and with
    the same variables and dtypes, but where all variables have size 0 and numpy
    backend.
    If obj is neither a DataArray nor Dataset, return it unaltered.
    """
    if isinstance(obj, DataArray):
        obj_array = obj
        obj = obj._to_temp_dataset()
    elif isinstance(obj, Dataset):
        obj_array = None
    else:
        return obj

    meta = Dataset()
    for name, variable in obj.variables.items():
        meta_obj = meta_from_array(variable.data, ndim=variable.ndim)
        meta[name] = (variable.dims, meta_obj, variable.attrs)
    meta.attrs = obj.attrs
    meta = meta.set_coords(obj.coords)

    if obj_array is not None:
        return obj_array._from_temp_dataset(meta)
    return meta
Ejemplo n.º 7
0
def test_meta_from_array(asarray):
    x = np.array(1)
    assert meta_from_array(x, ndim=1).shape == (0, )

    x = np.ones((1, 2, 3), dtype='float32')
    x = asarray(x)

    assert meta_from_array(x).shape == (0, 0, 0)
    assert meta_from_array(x).dtype == 'float32'
    assert type(meta_from_array(x)) is type(x)

    assert meta_from_array(x, ndim=2).shape == (0, 0)
    assert meta_from_array(x, ndim=4).shape == (0, 0, 0, 0)
    assert meta_from_array(x, dtype="float64").dtype == "float64"

    x = da.ones((1, ))
    assert isinstance(meta_from_array(x), np.ndarray)

    assert meta_from_array(123) == 123
    assert meta_from_array('foo') == 'foo'
    assert meta_from_array(np.dtype('float32')) == np.dtype('float32')
Ejemplo n.º 8
0
def test_meta_from_array(asarray):
    if "COO.from_numpy" in str(asarray) and _numpy_120:
        raise pytest.xfail(reason="sparse-383")

    x = np.array(1)
    assert meta_from_array(x, ndim=1).shape == (0,)

    x = np.ones((1, 2, 3), dtype="float32")
    x = asarray(x)

    assert meta_from_array(x).shape == (0, 0, 0)
    assert meta_from_array(x).dtype == "float32"
    assert type(meta_from_array(x)) is type(x)

    assert meta_from_array(x, ndim=2).shape == (0, 0)
    assert meta_from_array(x, ndim=4).shape == (0, 0, 0, 0)
    assert meta_from_array(x, dtype="float64").dtype == "float64"

    x = da.ones((1,))
    assert isinstance(meta_from_array(x), np.ndarray)

    assert meta_from_array(123) == 123
    assert meta_from_array("foo") == "foo"
    assert meta_from_array(np.dtype("float32")) == np.dtype("float32")
Ejemplo n.º 9
0
def percentile(a, q, method="linear", internal_method="default", **kwargs):
    """Approximate percentile of 1-D array

    Parameters
    ----------
    a : Array
    q : array_like of float
        Percentile or sequence of percentiles to compute, which must be between
        0 and 100 inclusive.
    method : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional
        The interpolation method to use when the desired percentile lies
        between two data points ``i < j``. Only valid for ``method='dask'``.

        - 'linear': ``i + (j - i) * fraction``, where ``fraction``
          is the fractional part of the index surrounded by ``i``
          and ``j``.
        - 'lower': ``i``.
        - 'higher': ``j``.
        - 'nearest': ``i`` or ``j``, whichever is nearest.
        - 'midpoint': ``(i + j) / 2``.

        .. versionchanged:: 2022.1.0
            This argument was previously called "interpolation"

    internal_method : {'default', 'dask', 'tdigest'}, optional
        What internal method to use. By default will use dask's internal custom
        algorithm (``'dask'``).  If set to ``'tdigest'`` will use tdigest for
        floats and ints and fallback to the ``'dask'`` otherwise.

        .. versionchanged:: 2022.1.0
            This argument was previously called “method”.

    interpolation : str, optional
        Deprecated name for the method keyword argument.

        .. deprecated:: 2022.1.0

    See Also
    --------
    numpy.percentile : Numpy's equivalent Percentile function
    """
    from dask.array.dispatch import percentile_lookup as _percentile
    from dask.array.utils import array_safe, meta_from_array

    allowed_internal_methods = ["default", "dask", "tdigest"]

    if method in allowed_internal_methods:
        warnings.warn(
            "In Dask 2022.1.0, the `method=` argument was renamed to `internal_method=`",
            FutureWarning,
        )
        internal_method = method

    if "interpolation" in kwargs:
        if _numpy_122:
            warnings.warn(
                "In Dask 2022.1.0, the `interpolation=` argument to percentile was renamed to "
                "`method= ` ",
                FutureWarning,
            )
        method = kwargs.pop("interpolation")

    if kwargs:
        raise TypeError(
            f"percentile() got an unexpected keyword argument {kwargs.keys()}")

    if not a.ndim == 1:
        raise NotImplementedError(
            "Percentiles only implemented for 1-d arrays")
    if isinstance(q, Number):
        q = [q]
    q = array_safe(q, like=meta_from_array(a))
    token = tokenize(a, q, method)

    dtype = a.dtype
    if np.issubdtype(dtype, np.integer):
        dtype = (array_safe([], dtype=dtype, like=meta_from_array(a)) /
                 0.5).dtype
    meta = meta_from_array(a, dtype=dtype)

    if internal_method not in allowed_internal_methods:
        raise ValueError(
            f"`internal_method=` must be one of {allowed_internal_methods}")

    # Allow using t-digest if method is allowed and dtype is of floating or integer type
    if (internal_method == "tdigest" and method == "linear"
            and (np.issubdtype(dtype, np.floating)
                 or np.issubdtype(dtype, np.integer))):

        from dask.utils import import_required

        import_required(
            "crick",
            "crick is a required dependency for using the t-digest method.")

        name = "percentile_tdigest_chunk-" + token
        dsk = {(name, i): (_tdigest_chunk, key)
               for i, key in enumerate(a.__dask_keys__())}

        name2 = "percentile_tdigest-" + token

        dsk2 = {(name2, 0): (_percentiles_from_tdigest, q, sorted(dsk))}

    # Otherwise use the custom percentile algorithm
    else:
        # Add 0 and 100 during calculation for more robust behavior (hopefully)
        calc_q = np.pad(q, 1, mode="constant")
        calc_q[-1] = 100
        name = "percentile_chunk-" + token
        dsk = {(name, i): (_percentile, key, calc_q, method)
               for i, key in enumerate(a.__dask_keys__())}

        name2 = "percentile-" + token
        dsk2 = {
            (name2, 0): (
                merge_percentiles,
                q,
                [calc_q] * len(a.chunks[0]),
                sorted(dsk),
                method,
            )
        }

    dsk = merge(dsk, dsk2)
    graph = HighLevelGraph.from_collections(name2, dsk, dependencies=[a])
    return Array(graph, name2, chunks=((len(q), ), ), meta=meta)
Ejemplo n.º 10
0
def apply_gufunc(
    func,
    signature,
    *args,
    axes=None,
    axis=None,
    keepdims=False,
    output_dtypes=None,
    output_sizes=None,
    vectorize=None,
    allow_rechunk=False,
    meta=None,
    **kwargs,
):
    """
    Apply a generalized ufunc or similar python function to arrays.

    ``signature`` determines if the function consumes or produces core
    dimensions. The remaining dimensions in given input arrays (``*args``)
    are considered loop dimensions and are required to broadcast
    naturally against each other.

    In other terms, this function is like ``np.vectorize``, but for
    the blocks of dask arrays. If the function itself shall also
    be vectorized use ``vectorize=True`` for convenience.

    Parameters
    ----------
    func : callable
        Function to call like ``func(*args, **kwargs)`` on input arrays
        (``*args``) that returns an array or tuple of arrays. If multiple
        arguments with non-matching dimensions are supplied, this function is
        expected to vectorize (broadcast) over axes of positional arguments in
        the style of NumPy universal functions [1]_ (if this is not the case,
        set ``vectorize=True``). If this function returns multiple outputs,
        ``output_core_dims`` has to be set as well.
    signature: string
        Specifies what core dimensions are consumed and produced by ``func``.
        According to the specification of numpy.gufunc signature [2]_
    *args : numeric
        Input arrays or scalars to the callable function.
    axes: List of tuples, optional, keyword only
        A list of tuples with indices of axes a generalized ufunc should operate on.
        For instance, for a signature of ``"(i,j),(j,k)->(i,k)"`` appropriate for
        matrix multiplication, the base elements are two-dimensional matrices
        and these are taken to be stored in the two last axes of each argument. The
        corresponding axes keyword would be ``[(-2, -1), (-2, -1), (-2, -1)]``.
        For simplicity, for generalized ufuncs that operate on 1-dimensional arrays
        (vectors), a single integer is accepted instead of a single-element tuple,
        and for generalized ufuncs for which all outputs are scalars, the output
        tuples can be omitted.
    axis: int, optional, keyword only
        A single axis over which a generalized ufunc should operate. This is a short-cut
        for ufuncs that operate over a single, shared core dimension, equivalent to passing
        in axes with entries of (axis,) for each single-core-dimension argument and ``()`` for
        all others. For instance, for a signature ``"(i),(i)->()"``, it is equivalent to passing
        in ``axes=[(axis,), (axis,), ()]``.
    keepdims: bool, optional, keyword only
        If this is set to True, axes which are reduced over will be left in the result as
        a dimension with size one, so that the result will broadcast correctly against the
        inputs. This option can only be used for generalized ufuncs that operate on inputs
        that all have the same number of core dimensions and with outputs that have no core
        dimensions , i.e., with signatures like ``"(i),(i)->()"`` or ``"(m,m)->()"``.
        If used, the location of the dimensions in the output can be controlled with axes
        and axis.
    output_dtypes : Optional, dtype or list of dtypes, keyword only
        Valid numpy dtype specification or list thereof.
        If not given, a call of ``func`` with a small set of data
        is performed in order to try to automatically determine the
        output dtypes.
    output_sizes : dict, optional, keyword only
        Optional mapping from dimension names to sizes for outputs. Only used if
        new core dimensions (not found on inputs) appear on outputs.
    vectorize: bool, keyword only
        If set to ``True``, ``np.vectorize`` is applied to ``func`` for
        convenience. Defaults to ``False``.
    allow_rechunk: Optional, bool, keyword only
        Allows rechunking, otherwise chunk sizes need to match and core
        dimensions are to consist only of one chunk.
        Warning: enabling this can increase memory usage significantly.
        Defaults to ``False``.
    meta: Optional, tuple, keyword only
        tuple of empty ndarrays describing the shape and dtype of the output of the gufunc.
        Defaults to ``None``.
    **kwargs : dict
        Extra keyword arguments to pass to `func`

    Returns
    -------
    Single dask.array.Array or tuple of dask.array.Array

    Examples
    --------
    >>> import dask.array as da
    >>> import numpy as np
    >>> def stats(x):
    ...     return np.mean(x, axis=-1), np.std(x, axis=-1)
    >>> a = da.random.normal(size=(10,20,30), chunks=(5, 10, 30))
    >>> mean, std = da.apply_gufunc(stats, "(i)->(),()", a)
    >>> mean.compute().shape
    (10, 20)


    >>> def outer_product(x, y):
    ...     return np.einsum("i,j->ij", x, y)
    >>> a = da.random.normal(size=(   20,30), chunks=(10, 30))
    >>> b = da.random.normal(size=(10, 1,40), chunks=(5, 1, 40))
    >>> c = da.apply_gufunc(outer_product, "(i),(j)->(i,j)", a, b, vectorize=True)
    >>> c.compute().shape
    (10, 20, 30, 40)

    References
    ----------
    .. [1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html
    .. [2] https://docs.scipy.org/doc/numpy/reference/c-api/generalized-ufuncs.html
    """
    # Input processing:
    ## Signature
    if not isinstance(signature, str):
        raise TypeError("`signature` has to be of type string")
    # NumPy versions before https://github.com/numpy/numpy/pull/19627
    # would not ignore whitespace characters in `signature` like they
    # are supposed to. We remove the whitespace here as a workaround.
    signature = re.sub(r"\s+", "", signature)
    input_coredimss, output_coredimss = _parse_gufunc_signature(signature)

    ## Determine nout: nout = None for functions of one direct return; nout = int for return tuples
    nout = None if not isinstance(output_coredimss,
                                  list) else len(output_coredimss)

    ## Consolidate onto `meta`
    if meta is not None and output_dtypes is not None:
        raise ValueError(
            "Only one of `meta` and `output_dtypes` should be given (`meta` is preferred)."
        )
    if meta is None:
        if output_dtypes is None:
            ## Infer `output_dtypes`
            if vectorize:
                tempfunc = np.vectorize(func, signature=signature)
            else:
                tempfunc = func
            output_dtypes = apply_infer_dtype(tempfunc, args, kwargs,
                                              "apply_gufunc", "output_dtypes",
                                              nout)

        ## Turn `output_dtypes` into `meta`
        if (nout is None and isinstance(output_dtypes, (tuple, list))
                and len(output_dtypes) == 1):
            output_dtypes = output_dtypes[0]
        sample = args[0] if args else None
        if nout is None:
            meta = meta_from_array(sample, dtype=output_dtypes)
        else:
            meta = tuple(
                meta_from_array(sample, dtype=odt) for odt in output_dtypes)

    ## Normalize `meta` format
    meta = meta_from_array(meta)
    if isinstance(meta, list):
        meta = tuple(meta)

    ## Validate `meta`
    if nout is None:
        if isinstance(meta, tuple):
            if len(meta) == 1:
                meta = meta[0]
            else:
                raise ValueError(
                    "For a function with one output, must give a single item for `output_dtypes`/`meta`, "
                    "not a tuple or list.")
    else:
        if not isinstance(meta, tuple):
            raise ValueError(
                f"For a function with {nout} outputs, must give a tuple or list for `output_dtypes`/`meta`, "
                "not a single item.")
        if len(meta) != nout:
            raise ValueError(
                f"For a function with {nout} outputs, must give a tuple or list of {nout} items for "
                f"`output_dtypes`/`meta`, not {len(meta)}.")

    ## Vectorize function, if required
    if vectorize:
        otypes = [x.dtype
                  for x in meta] if isinstance(meta, tuple) else [meta.dtype]
        func = np.vectorize(func, signature=signature, otypes=otypes)

    ## Miscellaneous
    if output_sizes is None:
        output_sizes = {}

    ## Axes
    input_axes, output_axes = _validate_normalize_axes(axes, axis, keepdims,
                                                       input_coredimss,
                                                       output_coredimss)

    # Main code:
    ## Cast all input arrays to dask
    args = [asarray(a) for a in args]

    if len(input_coredimss) != len(args):
        raise ValueError(
            "According to `signature`, `func` requires %d arguments, but %s given"
            % (len(input_coredimss), len(args)))

    ## Axes: transpose input arguments
    transposed_args = []
    for arg, iax, input_coredims in zip(args, input_axes, input_coredimss):
        shape = arg.shape
        iax = tuple(a if a < 0 else a - len(shape) for a in iax)
        tidc = tuple(i
                     for i in range(-len(shape) + 0, 0) if i not in iax) + iax
        transposed_arg = arg.transpose(tidc)
        transposed_args.append(transposed_arg)
    args = transposed_args

    ## Assess input args for loop dims
    input_shapes = [a.shape for a in args]
    input_chunkss = [a.chunks for a in args]
    num_loopdims = [
        len(s) - len(cd) for s, cd in zip(input_shapes, input_coredimss)
    ]
    max_loopdims = max(num_loopdims) if num_loopdims else None
    core_input_shapes = [
        dict(zip(icd, s[n:]))
        for s, n, icd in zip(input_shapes, num_loopdims, input_coredimss)
    ]
    core_shapes = merge(*core_input_shapes)
    core_shapes.update(output_sizes)

    loop_input_dimss = [
        tuple("__loopdim%d__" % d
              for d in range(max_loopdims - n, max_loopdims))
        for n in num_loopdims
    ]
    input_dimss = [l + c for l, c in zip(loop_input_dimss, input_coredimss)]

    loop_output_dims = max(loop_input_dimss,
                           key=len) if loop_input_dimss else tuple()

    ## Assess input args for same size and chunk sizes
    ### Collect sizes and chunksizes of all dims in all arrays
    dimsizess = {}
    chunksizess = {}
    for dims, shape, chunksizes in zip(input_dimss, input_shapes,
                                       input_chunkss):
        for dim, size, chunksize in zip(dims, shape, chunksizes):
            dimsizes = dimsizess.get(dim, [])
            dimsizes.append(size)
            dimsizess[dim] = dimsizes
            chunksizes_ = chunksizess.get(dim, [])
            chunksizes_.append(chunksize)
            chunksizess[dim] = chunksizes_
    ### Assert correct partitioning, for case:
    for dim, sizes in dimsizess.items():
        #### Check that the arrays have same length for same dimensions or dimension `1`
        if set(sizes) | {1} != {1, max(sizes)}:
            raise ValueError(
                f"Dimension `'{dim}'` with different lengths in arrays")
        if not allow_rechunk:
            chunksizes = chunksizess[dim]
            #### Check if core dimensions consist of only one chunk
            if (dim in core_shapes) and (chunksizes[0][0] < core_shapes[dim]):
                raise ValueError(
                    "Core dimension `'{}'` consists of multiple chunks. To fix, rechunk into a single \
chunk along this dimension or set `allow_rechunk=True`, but beware that this may increase memory usage \
significantly.".format(dim))
            #### Check if loop dimensions consist of same chunksizes, when they have sizes > 1
            relevant_chunksizes = list(
                unique(c for s, c in zip(sizes, chunksizes) if s > 1))
            if len(relevant_chunksizes) > 1:
                raise ValueError(
                    f"Dimension `'{dim}'` with different chunksize present")

    ## Apply function - use blockwise here
    arginds = list(concat(zip(args, input_dimss)))

    ### Use existing `blockwise` but only with loopdims to enforce
    ### concatenation for coredims that appear also at the output
    ### Modifying `blockwise` could improve things here.
    tmp = blockwise(func,
                    loop_output_dims,
                    *arginds,
                    concatenate=True,
                    meta=meta,
                    **kwargs)

    # NOTE: we likely could just use `meta` instead of `tmp._meta`,
    # but we use it and validate it anyway just to be sure nothing odd has happened.
    metas = tmp._meta
    if nout is None:
        assert not isinstance(
            metas, (list, tuple)
        ), f"meta changed from single output to multiple output during blockwise: {meta} -> {metas}"
        metas = (metas, )
    else:
        assert isinstance(
            metas, (list, tuple)
        ), f"meta changed from multiple output to single output during blockwise: {meta} -> {metas}"
        assert (
            len(metas) == nout
        ), f"Number of outputs changed from {nout} to {len(metas)} during blockwise"

    ## Prepare output shapes
    loop_output_shape = tmp.shape
    loop_output_chunks = tmp.chunks
    keys = list(flatten(tmp.__dask_keys__()))
    name, token = keys[0][0].split("-")

    ### *) Treat direct output
    if nout is None:
        output_coredimss = [output_coredimss]

    ## Split output
    leaf_arrs = []
    for i, (ocd, oax,
            meta) in enumerate(zip(output_coredimss, output_axes, metas)):
        core_output_shape = tuple(core_shapes[d] for d in ocd)
        core_chunkinds = len(ocd) * (0, )
        output_shape = loop_output_shape + core_output_shape
        output_chunks = loop_output_chunks + core_output_shape
        leaf_name = "%s_%d-%s" % (name, i, token)
        leaf_dsk = {(leaf_name, ) + key[1:] + core_chunkinds:
                    ((getitem, key, i) if nout else key)
                    for key in keys}
        graph = HighLevelGraph.from_collections(leaf_name,
                                                leaf_dsk,
                                                dependencies=[tmp])
        meta = meta_from_array(meta, len(output_shape))
        leaf_arr = Array(graph,
                         leaf_name,
                         chunks=output_chunks,
                         shape=output_shape,
                         meta=meta)

        ### Axes:
        if keepdims:
            slices = len(
                leaf_arr.shape) * (slice(None), ) + len(oax) * (np.newaxis, )
            leaf_arr = leaf_arr[slices]

        tidcs = [None] * len(leaf_arr.shape)
        for ii, oa in zip(range(-len(oax), 0), oax):
            tidcs[oa] = ii
        j = 0
        for ii in range(len(tidcs)):
            if tidcs[ii] is None:
                tidcs[ii] = j
                j += 1
        leaf_arr = leaf_arr.transpose(tidcs)
        leaf_arrs.append(leaf_arr)

    return (*leaf_arrs, ) if nout else leaf_arrs[0]  # Undo *) from above
Ejemplo n.º 11
0
def pad_edge(array, pad_width, mode, **kwargs):
    """
    Helper function for padding edges.

    Handles the cases where the only the values on the edge are needed.
    """

    kwargs = {k: expand_pad_value(array, v) for k, v in kwargs.items()}

    result = array
    for d in range(array.ndim):
        pad_shapes, pad_chunks = get_pad_shapes_chunks(result, pad_width,
                                                       (d, ))
        pad_arrays = [result, result]

        if mode == "constant":
            from dask.array.utils import asarray_safe

            constant_values = kwargs["constant_values"][d]
            constant_values = [
                asarray_safe(c,
                             like=meta_from_array(array),
                             dtype=result.dtype) for c in constant_values
            ]

            pad_arrays = [
                broadcast_to(v, s, c)
                for v, s, c in zip(constant_values, pad_shapes, pad_chunks)
            ]
        elif mode in ["edge", "linear_ramp"]:
            pad_slices = [
                result.ndim * [slice(None)], result.ndim * [slice(None)]
            ]
            pad_slices[0][d] = slice(None, 1, None)
            pad_slices[1][d] = slice(-1, None, None)
            pad_slices = [tuple(sl) for sl in pad_slices]

            pad_arrays = [result[sl] for sl in pad_slices]

            if mode == "edge":
                pad_arrays = [
                    broadcast_to(a, s, c)
                    for a, s, c in zip(pad_arrays, pad_shapes, pad_chunks)
                ]
            elif mode == "linear_ramp":
                end_values = kwargs["end_values"][d]

                pad_arrays = [
                    a.map_blocks(
                        linear_ramp_chunk,
                        ev,
                        pw,
                        chunks=c,
                        dtype=result.dtype,
                        dim=d,
                        step=(2 * i - 1),
                    ) for i, (a, ev, pw, c) in enumerate(
                        zip(pad_arrays, end_values, pad_width[d], pad_chunks))
                ]
        elif mode == "empty":
            pad_arrays = [
                empty_like(array, shape=s, dtype=array.dtype, chunks=c)
                for s, c in zip(pad_shapes, pad_chunks)
            ]

        result = concatenate([pad_arrays[0], result, pad_arrays[1]], axis=d)

    return result
Ejemplo n.º 12
0
def diagonal(a, offset=0, axis1=0, axis2=1):
    name = "diagonal-" + tokenize(a, offset, axis1, axis2)

    if a.ndim < 2:
        # NumPy uses `diag` as we do here.
        raise ValueError("diag requires an array of at least two dimensions")

    def _axis_fmt(axis, name, ndim):
        if axis < 0:
            t = ndim + axis
            if t < 0:
                msg = "{}: axis {} is out of bounds for array of dimension {}"
                raise np.AxisError(msg.format(name, axis, ndim))
            axis = t
        return axis

    def pop_axes(chunks, axis1, axis2):
        chunks = list(chunks)
        chunks.pop(axis2)
        chunks.pop(axis1)
        return tuple(chunks)

    axis1 = _axis_fmt(axis1, "axis1", a.ndim)
    axis2 = _axis_fmt(axis2, "axis2", a.ndim)

    if axis1 == axis2:
        raise ValueError("axis1 and axis2 cannot be the same")

    a = asarray(a)
    k = offset
    if axis1 > axis2:
        axis1, axis2 = axis2, axis1
        k = -offset

    free_axes = set(range(a.ndim)) - {axis1, axis2}
    free_indices = list(product(*(range(a.numblocks[i]) for i in free_axes)))
    ndims_free = len(free_axes)

    # equation of diagonal: i = j - k
    kdiag_row_start = max(0, -k)
    kdiag_col_start = max(0, k)
    kdiag_row_stop = min(a.shape[axis1], a.shape[axis2] - k)
    len_kdiag = kdiag_row_stop - kdiag_row_start

    if len_kdiag <= 0:
        xp = np

        if is_cupy_type(a._meta):
            import cupy

            xp = cupy

        out_chunks = pop_axes(a.chunks, axis1, axis2) + ((0, ), )
        dsk = dict()
        for free_idx in free_indices:
            shape = tuple(out_chunks[axis][free_idx[axis]]
                          for axis in range(ndims_free))
            dsk[(name, ) + free_idx + (0, )] = (
                partial(xp.empty, dtype=a.dtype),
                shape + (0, ),
            )

        meta = meta_from_array(a, ndims_free + 1)
        return Array(dsk, name, out_chunks, meta=meta)

    # compute row index ranges for chunks along axis1:
    row_stops_ = np.cumsum(a.chunks[axis1])
    row_starts = np.roll(row_stops_, 1)
    row_starts[0] = 0

    # compute column index ranges for chunks along axis2:
    col_stops_ = np.cumsum(a.chunks[axis2])
    col_starts = np.roll(col_stops_, 1)
    col_starts[0] = 0

    # locate first chunk containing diagonal:
    row_blockid = np.arange(a.numblocks[axis1])
    col_blockid = np.arange(a.numblocks[axis2])

    row_filter = (row_starts <= kdiag_row_start) & (kdiag_row_start <
                                                    row_stops_)
    col_filter = (col_starts <= kdiag_col_start) & (kdiag_col_start <
                                                    col_stops_)
    (I, ) = row_blockid[row_filter]
    (J, ) = col_blockid[col_filter]

    # follow k-diagonal through chunks while constructing dask graph:
    dsk = dict()
    i = 0
    kdiag_chunks = ()
    while kdiag_row_start < a.shape[axis1] and kdiag_col_start < a.shape[axis2]:
        # localize block info:
        nrows, ncols = a.chunks[axis1][I], a.chunks[axis2][J]
        kdiag_row_start -= row_starts[I]
        kdiag_col_start -= col_starts[J]
        k = -kdiag_row_start if kdiag_row_start > 0 else kdiag_col_start
        kdiag_row_end = min(nrows, ncols - k)
        kdiag_len = kdiag_row_end - kdiag_row_start

        # increment dask graph:
        for free_idx in free_indices:
            input_idx = (free_idx[:axis1] + (I, ) + free_idx[axis1:axis2 - 1] +
                         (J, ) + free_idx[axis2 - 1:])
            output_idx = free_idx + (i, )
            dsk[(name, ) + output_idx] = (
                np.diagonal,
                (a.name, ) + input_idx,
                k,
                axis1,
                axis2,
            )

        kdiag_chunks += (kdiag_len, )
        # prepare for next iteration:
        i += 1
        kdiag_row_start = kdiag_row_end + row_starts[I]
        kdiag_col_start = min(ncols, nrows + k) + col_starts[J]
        I = I + 1 if kdiag_row_start == row_stops_[I] else I
        J = J + 1 if kdiag_col_start == col_stops_[J] else J

    out_chunks = pop_axes(a.chunks, axis1, axis2) + (kdiag_chunks, )
    graph = HighLevelGraph.from_collections(name, dsk, dependencies=[a])
    meta = meta_from_array(a, ndims_free + 1)
    return Array(graph, name, out_chunks, meta=meta)
Ejemplo n.º 13
0
def arange(*args, chunks="auto", like=None, dtype=None, **kwargs):
    """
    Return evenly spaced values from `start` to `stop` with step size `step`.

    The values are half-open [start, stop), so including start and excluding
    stop. This is basically the same as python's range function but for dask
    arrays.

    When using a non-integer step, such as 0.1, the results will often not be
    consistent. It is better to use linspace for these cases.

    Parameters
    ----------
    start : int, optional
        The starting value of the sequence. The default is 0.
    stop : int
        The end of the interval, this value is excluded from the interval.
    step : int, optional
        The spacing between the values. The default is 1 when not specified.
        The last value of the sequence.
    chunks :  int
        The number of samples on each block. Note that the last block will have
        fewer samples if ``len(array) % chunks != 0``.
        Defaults to "auto" which will automatically determine chunk sizes.
    dtype : numpy.dtype
        Output dtype. Omit to infer it from start, stop, step
        Defaults to ``None``.
    like : array type or ``None``
        Array to extract meta from. Defaults to ``None``.

    Returns
    -------
    samples : dask array

    See Also
    --------
    dask.array.linspace
    """
    if len(args) == 1:
        start = 0
        stop = args[0]
        step = 1
    elif len(args) == 2:
        start = args[0]
        stop = args[1]
        step = 1
    elif len(args) == 3:
        start, stop, step = args
    else:
        raise TypeError("""
        arange takes 3 positional arguments: arange([start], stop, [step])
        """)

    num = int(max(np.ceil((stop - start) / step), 0))

    meta = meta_from_array(like) if like is not None else None

    if dtype is None:
        dtype = np.arange(start, stop, step * num if num else step).dtype

    chunks = normalize_chunks(chunks, (num, ), dtype=dtype)

    if kwargs:
        raise TypeError("Unexpected keyword argument(s): %s" %
                        ",".join(kwargs.keys()))

    name = "arange-" + tokenize((start, stop, step, chunks, dtype))
    dsk = {}
    elem_count = 0

    for i, bs in enumerate(chunks[0]):
        blockstart = start + (elem_count * step)
        blockstop = start + ((elem_count + bs) * step)
        task = (
            partial(chunk.arange, like=like),
            blockstart,
            blockstop,
            step,
            bs,
            dtype,
        )
        dsk[(name, i)] = task
        elem_count += bs

    return Array(dsk, name, chunks, dtype=dtype, meta=meta)
Ejemplo n.º 14
0
def reshape(x, shape, merge_chunks=True, limit=None):
    """Reshape array to new shape

    Parameters
    ----------
    shape : int or tuple of ints
        The new shape should be compatible with the original shape. If
        an integer, then the result will be a 1-D array of that length.
        One shape dimension can be -1. In this case, the value is
        inferred from the length of the array and remaining dimensions.
    merge_chunks : bool, default True
        Whether to merge chunks using the logic in :meth:`dask.array.rechunk`
        when communication is necessary given the input array chunking and
        the output shape. With ``merge_chunks==False``, the input array will
        be rechunked to a chunksize of 1, which can create very many tasks.
    limit: int (optional)
        The maximum block size to target in bytes. If no limit is provided,
        it defaults to using the ``array.chunk-size`` Dask config value.

    Notes
    -----
    This is a parallelized version of the ``np.reshape`` function with the
    following limitations:

    1.  It assumes that the array is stored in `row-major order`_
    2.  It only allows for reshapings that collapse or merge dimensions like
        ``(1, 2, 3, 4) -> (1, 6, 4)`` or ``(64,) -> (4, 4, 4)``

    .. _`row-major order`: https://en.wikipedia.org/wiki/Row-_and_column-major_order

    When communication is necessary this algorithm depends on the logic within
    rechunk.  It endeavors to keep chunk sizes roughly the same when possible.

    See :ref:`array-chunks.reshaping` for a discussion the tradeoffs of
    ``merge_chunks``.

    See Also
    --------
    dask.array.rechunk
    numpy.reshape
    """
    # Sanitize inputs, look for -1 in shape
    from dask.array.core import PerformanceWarning
    from dask.array.slicing import sanitize_index

    shape = tuple(map(sanitize_index, shape))
    known_sizes = [s for s in shape if s != -1]
    if len(known_sizes) < len(shape):
        if len(shape) - len(known_sizes) > 1:
            raise ValueError("can only specify one unknown dimension")
        # Fastpath for x.reshape(-1) on 1D arrays, allows unknown shape in x
        # for this case only.
        if len(shape) == 1 and x.ndim == 1:
            return x
        missing_size = sanitize_index(x.size / reduce(mul, known_sizes, 1))
        shape = tuple(missing_size if s == -1 else s for s in shape)

    if np.isnan(sum(x.shape)):
        raise ValueError("Array chunk size or shape is unknown. shape: %s\n\n"
                         "Possible solution with x.compute_chunk_sizes()" %
                         str(x.shape))

    if reduce(mul, shape, 1) != x.size:
        raise ValueError("total size of new array must be unchanged")

    if x.shape == shape:
        return x

    meta = meta_from_array(x, len(shape))

    name = "reshape-" + tokenize(x, shape)

    if x.npartitions == 1:
        key = next(flatten(x.__dask_keys__()))
        dsk = {(name, ) + (0, ) * len(shape): (M.reshape, key, shape)}
        chunks = tuple((d, ) for d in shape)
        graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x])
        return Array(graph, name, chunks, meta=meta)

    # Logic or how to rechunk
    din = len(x.shape)
    dout = len(shape)
    if not merge_chunks and din > dout:
        x = x.rechunk({i: 1 for i in range(din - dout)})

    inchunks, outchunks = reshape_rechunk(x.shape, shape, x.chunks)
    # Check output chunks are not too large
    max_chunksize_in_bytes = reduce(
        mul, [max(i) for i in outchunks]) * x.dtype.itemsize

    if limit is None:
        limit = parse_bytes(config.get("array.chunk-size"))
        split = config.get("array.slicing.split-large-chunks", None)
    else:
        limit = parse_bytes(limit)
        split = True

    if max_chunksize_in_bytes > limit:
        if split is None:
            msg = (
                "Reshaping is producing a large chunk. To accept the large\n"
                "chunk and silence this warning, set the option\n"
                "    >>> with dask.config.set(**{'array.slicing.split_large_chunks': False}):\n"
                "    ...     array.reshape(shape)\n\n"
                "To avoid creating the large chunks, set the option\n"
                "    >>> with dask.config.set(**{'array.slicing.split_large_chunks': True}):\n"
                "    ...     array.reshape(shape)"
                "Explictly passing ``limit`` to ``reshape`` will also silence this warning\n"
                "    >>> array.reshape(shape, limit='128 MiB')")
            warnings.warn(msg, PerformanceWarning, stacklevel=6)
        elif split:
            # Leave chunk sizes unaltered where possible
            matching_chunks = Counter(inchunks) & Counter(outchunks)
            chunk_plan = []
            for out in outchunks:
                if matching_chunks[out] > 0:
                    chunk_plan.append(out)
                    matching_chunks[out] -= 1
                else:
                    chunk_plan.append("auto")
            outchunks = normalize_chunks(
                chunk_plan,
                shape=shape,
                limit=limit,
                dtype=x.dtype,
                previous_chunks=inchunks,
            )

    x2 = x.rechunk(inchunks)

    # Construct graph
    in_keys = list(product([x2.name], *[range(len(c)) for c in inchunks]))
    out_keys = list(product([name], *[range(len(c)) for c in outchunks]))
    shapes = list(product(*outchunks))
    dsk = {
        a: (M.reshape, b, shape)
        for a, b, shape in zip(out_keys, in_keys, shapes)
    }

    graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x2])
    return Array(graph, name, outchunks, meta=meta)