Ejemplo n.º 1
0
def meta_nonempty_object(x):
    """Create a nonempty pandas object from the given metadata.

    Returns a pandas DataFrame, Series, or Index that contains two rows
    of fake data.
    """
    if is_scalar(x):
        return _nonempty_scalar(x)
    else:
        raise TypeError(
            "Expected Pandas-like Index, Series, DataFrame, or scalar, "
            f"got {typename(type(x))}")
Ejemplo n.º 2
0
def make_meta_object(x, index=None):
    """Create an empty cudf object containing the desired metadata.

    Parameters
    ----------
    x : dict, tuple, list, cudf.Series, cudf.DataFrame, cudf.Index,
        dtype, scalar
        To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or
        an iterable of `(name, dtype)` tuples. To create a `Series`, provide a
        tuple of `(name, dtype)`. If a cudf object, names, dtypes, and index
        should match the desired output. If a dtype or scalar, a scalar of the
        same dtype is returned.
    index :  cudf.Index, optional
        Any cudf index to use in the metadata. If none provided, a
        `RangeIndex` will be used.

    Examples
    --------
    >>> make_meta([('a', 'i8'), ('b', 'O')])
    Empty DataFrame
    Columns: [a, b]
    Index: []
    >>> make_meta(('a', 'f8'))
    Series([], Name: a, dtype: float64)
    >>> make_meta('i8')
    1
    """
    if hasattr(x, "_meta"):
        return x._meta
    elif is_arraylike(x) and x.shape:
        return x[:0]

    if index is not None:
        index = make_meta(index)

    if isinstance(x, dict):
        return cudf.DataFrame(
            {c: _empty_series(c, d, index=index)
             for (c, d) in x.items()},
            index=index,
        )
    if isinstance(x, tuple) and len(x) == 2:
        return _empty_series(x[0], x[1], index=index)
    elif isinstance(x, (list, tuple)):
        if not all(isinstance(i, tuple) and len(i) == 2 for i in x):
            raise ValueError(
                f"Expected iterable of tuples of (name, dtype), got {x}")
        return cudf.DataFrame(
            {c: _empty_series(c, d, index=index)
             for (c, d) in x},
            columns=[c for c, d in x],
            index=index,
        )
    elif not hasattr(x, "dtype") and x is not None:
        # could be a string, a dtype object, or a python type. Skip `None`,
        # because it is implictly converted to `dtype('f8')`, which we don't
        # want here.
        try:
            dtype = np.dtype(x)
            return _scalar_from_dtype(dtype)
        except Exception:
            # Continue on to next check
            pass

    if is_scalar(x):
        return _nonempty_scalar(x)

    raise TypeError(f"Don't know how to create metadata from {x}")
Ejemplo n.º 3
0
def make_meta_pandas_datetime_tz(x, index=None):
    return _nonempty_scalar(x)