def initialize_client_for_ssh_cluster(scheduler_host: str,
                                      worker_hosts: List[str]) -> Client:
    ssh_hosts = [scheduler_host, *worker_hosts]
    try:
        cluster = SSHCluster(
            hosts=ssh_hosts,
            connect_options={"known_hosts": None},
            worker_options={"nthreads": 1},
            # scheduler_options={"port": 0, "dashboard_address": ":8787"}
        )
        client = Client(cluster)
    except (KeyError, OSError):
        scheduler_address = f'{scheduler_host}:8786'
        client = Client(address=scheduler_address)

    return client
Ejemplo n.º 2
0
    def setup_cluster(self, mode='local', cluster=None, **kwargs):
        if self.client is not None:
            raise ValueError('Client is already set - call shutdown first!')

        if cluster is None:
            if mode == 'local':
                cluster = LocalCluster(**kwargs)
            elif mode == 'ssh':
                cluster = SSHCluster(**kwargs)
            elif mode == 'slurm':
                raise NotImplementedError('Slurm cluster is not implemented'
                                          ' in this version!')
            else:
                raise RuntimeError('Unknown mode of setup client '
                                   '{}!'.format(mode))
        self.client = Client(cluster)
Ejemplo n.º 3
0
def _exec_sample_dask(func, dask_args, verbosity):

    from dask.distributed import Client, progress, SSHCluster

    python_list = None
    if 'remote_python' in dask_args.keys():
        # start with python of the scheduler
        python_list = [dask_args['remote_python'][dask_args['scheduler']]]

    worker_list = []
    for worker, n_cpus in dask_args['workers'].items():
        worker_list.extend([worker] * n_cpus)

        if python_list is not None:
            # add python path of the workers
            python_list.extend([dask_args['remote_python'][worker]] * n_cpus)

    cluster = SSHCluster([dask_args['scheduler']] + worker_list,
                         connect_options={"known_hosts": None},
                         worker_options={
                             "nthreads": 1,
                             "n_workers": 1
                         },
                         scheduler_options={
                             "port": 0,
                             "dashboard_address": ":8787"
                         },
                         remote_python=python_list)

    client = Client(cluster)

    def _exec_sample(X):
        map_eval = client.map(func, X)
        if verbosity:
            progress(map_eval)
        result = client.submit(list, map_eval)
        return ot.Sample(result.result())

    return _exec_sample, cluster, client
Ejemplo n.º 4
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context",
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)
        check.param_invariant(
            isinstance(pipeline_context.executor, DaskExecutor),
            "pipeline_context",
            "Expected executor to be DaskExecutor got {}".format(
                pipeline_context.executor),
        )

        check.invariant(
            pipeline_context.instance.is_persistent,
            "Dask execution requires a persistent DagsterInstance",
        )

        step_levels = execution_plan.execution_step_levels()

        pipeline_name = pipeline_context.pipeline_def.name

        instance = pipeline_context.instance

        cluster_type = self.cluster_type
        if cluster_type == "local":
            from dask.distributed import LocalCluster

            cluster = LocalCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "yarn":
            from dask_yarn import YarnCluster

            cluster = YarnCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "ssh":
            from dask.distributed import SSHCluster

            cluster = SSHCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "pbs":
            from dask_jobqueue import PBSCluster

            cluster = PBSCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "moab":
            from dask_jobqueue import MoabCluster

            cluster = MoabCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "sge":
            from dask_jobqueue import SGECluster

            cluster = SGECluster(**self.build_dict(pipeline_name))
        elif cluster_type == "lsf":
            from dask_jobqueue import LSFCluster

            cluster = LSFCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "slurm":
            from dask_jobqueue import SLURMCluster

            cluster = SLURMCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "oar":
            from dask_jobqueue import OARCluster

            cluster = OARCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "kube":
            from dask_kubernetes import KubeCluster

            cluster = KubeCluster(**self.build_dict(pipeline_name))
        else:
            raise ValueError(
                f"Must be providing one of the following ('local', 'yarn', 'ssh', 'pbs', 'moab', 'sge', 'lsf', 'slurm', 'oar', 'kube') not {cluster_type}"
            )

        with dask.distributed.Client(cluster) as client:
            execution_futures = []
            execution_futures_dict = {}

            for step_level in step_levels:
                for step in step_level:
                    # We ensure correctness in sequencing by letting Dask schedule futures and
                    # awaiting dependencies within each step.
                    dependencies = []
                    for step_input in step.step_inputs:
                        for key in step_input.dependency_keys:
                            dependencies.append(execution_futures_dict[key])

                    run_config = dict(pipeline_context.run_config,
                                      execution={"in_process": {}})
                    recon_repo = pipeline_context.pipeline.get_reconstructable_repository(
                    )

                    dask_task_name = "%s.%s" % (pipeline_name, step.key)

                    recon_pipeline = recon_repo.get_reconstructable_pipeline(
                        pipeline_name)

                    future = client.submit(
                        query_on_dask_worker,
                        dependencies,
                        recon_pipeline,
                        pipeline_context.pipeline_run,
                        run_config,
                        [step.key],
                        pipeline_context.mode_def.name,
                        instance.get_ref(),
                        key=dask_task_name,
                        resources=get_dask_resource_requirements(step.tags),
                    )

                    execution_futures.append(future)
                    execution_futures_dict[step.key] = future

            # This tells Dask to awaits the step executions and retrieve their results to the
            # master
            futures = dask.distributed.as_completed(execution_futures,
                                                    with_results=True)

            # Allow interrupts while waiting for the results from Dask
            for future, result in iterate_with_context(
                    raise_interrupts_immediately, futures):
                for step_event in result:
                    check.inst(step_event, DagsterEvent)
                    yield step_event
Ejemplo n.º 5
0
    def execute(pipeline_context, execution_plan):
        check.inst_param(pipeline_context, 'pipeline_context',
                         SystemPipelineExecutionContext)
        check.inst_param(execution_plan, 'execution_plan', ExecutionPlan)

        dask_config = pipeline_context.executor_config

        check.param_invariant(
            isinstance(pipeline_context.executor_config, DaskConfig),
            'pipeline_context',
            'Expected executor_config to be DaskConfig got {}'.format(
                pipeline_context.executor_config),
        )

        # Checks to ensure storage is compatible with Dask configuration
        storage = pipeline_context.environment_dict.get('storage')
        check.invariant(storage.keys(),
                        'Must specify storage to use Dask execution')

        check.invariant(
            pipeline_context.instance.is_persistent,
            'Dask execution requires a persistent DagsterInstance',
        )

        # https://github.com/dagster-io/dagster/issues/2440
        check.invariant(
            pipeline_context.system_storage_def.is_persistent,
            'Cannot use in-memory storage with Dask, use filesystem, S3, or GCS',
        )

        step_levels = execution_plan.execution_step_levels()

        pipeline_name = pipeline_context.pipeline_def.name

        instance = pipeline_context.instance

        cluster_type = dask_config.cluster_type
        if cluster_type == 'local':
            from dask.distributed import LocalCluster

            cluster = LocalCluster(**dask_config.build_dict(pipeline_name))
        elif cluster_type == 'yarn':
            from dask_yarn import YarnCluster

            cluster = YarnCluster(**dask_config.build_dict(pipeline_name))
        elif cluster_type == 'ssh':
            from dask.distributed import SSHCluster

            cluster = SSHCluster(**dask_config.build_dict(pipeline_name))
        elif cluster_type == 'pbs':
            from dask_jobqueue import PBSCluster

            cluster = PBSCluster(**dask_config.build_dict(pipeline_name))
        elif cluster_type == 'kube':
            from dask_kubernetes import KubeCluster

            cluster = KubeCluster(**dask_config.build_dict(pipeline_name))
        else:
            raise ValueError(
                f"Must be providing one of the following ('local', 'yarn', 'ssh', 'pbs', 'kube') not {cluster_type}"
            )

        with dask.distributed.Client(cluster) as client:
            execution_futures = []
            execution_futures_dict = {}

            for step_level in step_levels:
                for step in step_level:
                    # We ensure correctness in sequencing by letting Dask schedule futures and
                    # awaiting dependencies within each step.
                    dependencies = []
                    for step_input in step.step_inputs:
                        for key in step_input.dependency_keys:
                            dependencies.append(execution_futures_dict[key])

                    environment_dict = dict(pipeline_context.environment_dict,
                                            execution={'in_process': {}})
                    variables = {
                        'executionParams': {
                            'selector': {
                                'name': pipeline_name
                            },
                            'runConfigData': environment_dict,
                            'mode': pipeline_context.mode_def.name,
                            'executionMetadata': {
                                'runId': pipeline_context.pipeline_run.run_id
                            },
                            'stepKeys': [step.key],
                        }
                    }

                    dask_task_name = '%s.%s' % (pipeline_name, step.key)

                    future = client.submit(
                        query_on_dask_worker,
                        pipeline_context.pipeline.
                        get_reconstructable_repository(),
                        variables,
                        dependencies,
                        instance.get_ref(),
                        key=dask_task_name,
                        resources=get_dask_resource_requirements(step.tags),
                    )

                    execution_futures.append(future)
                    execution_futures_dict[step.key] = future

            # This tells Dask to awaits the step executions and retrieve their results to the
            # master
            for future in dask.distributed.as_completed(execution_futures):
                for step_event in future.result():
                    check.inst(step_event, DagsterEvent)

                    yield step_event
Ejemplo n.º 6
0
    def execute(self, pipeline_context, execution_plan):
        check.inst_param(pipeline_context, "pipeline_context", SystemPipelineExecutionContext)
        check.inst_param(execution_plan, "execution_plan", ExecutionPlan)
        check.param_invariant(
            isinstance(pipeline_context.executor, DaskExecutor),
            "pipeline_context",
            "Expected executor to be DaskExecutor got {}".format(pipeline_context.executor),
        )

        # Checks to ensure storage is compatible with Dask configuration
        storage = pipeline_context.run_config.get("storage")
        check.invariant(storage.keys(), "Must specify storage to use Dask execution")

        check.invariant(
            pipeline_context.instance.is_persistent,
            "Dask execution requires a persistent DagsterInstance",
        )

        # https://github.com/dagster-io/dagster/issues/2440
        check.invariant(
            pipeline_context.system_storage_def.is_persistent,
            "Cannot use in-memory storage with Dask, use filesystem, S3, or GCS",
        )

        step_levels = execution_plan.execution_step_levels()

        pipeline_name = pipeline_context.pipeline_def.name

        instance = pipeline_context.instance

        cluster_type = self.cluster_type
        if cluster_type == "local":
            from dask.distributed import LocalCluster

            cluster = LocalCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "yarn":
            from dask_yarn import YarnCluster

            cluster = YarnCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "ssh":
            from dask.distributed import SSHCluster

            cluster = SSHCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "pbs":
            from dask_jobqueue import PBSCluster

            cluster = PBSCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "moab":
            from dask_jobqueue import MoabCluster

            cluster = MoabCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "sge":
            from dask_jobqueue import SGECluster

            cluster = SGECluster(**self.build_dict(pipeline_name))
        elif cluster_type == "lsf":
            from dask_jobqueue import LSFCluster

            cluster = LSFCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "slurm":
            from dask_jobqueue import SLURMCluster

            cluster = SLURMCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "oar":
            from dask_jobqueue import OARCluster

            cluster = OARCluster(**self.build_dict(pipeline_name))
        elif cluster_type == "kube":
            from dask_kubernetes import KubeCluster

            cluster = KubeCluster(**self.build_dict(pipeline_name))
        else:
            raise ValueError(
                f"Must be providing one of the following ('local', 'yarn', 'ssh', 'pbs', 'moab', 'sge', 'lsf', 'slurm', 'oar', 'kube') not {cluster_type}"
            )

        with dask.distributed.Client(cluster) as client:
            execution_futures = []
            execution_futures_dict = {}

            for step_level in step_levels:
                for step in step_level:
                    # We ensure correctness in sequencing by letting Dask schedule futures and
                    # awaiting dependencies within each step.
                    dependencies = []
                    for step_input in step.step_inputs:
                        for key in step_input.dependency_keys:
                            dependencies.append(execution_futures_dict[key])

                    run_config = dict(pipeline_context.run_config, execution={"in_process": {}})
                    recon_repo = pipeline_context.pipeline.get_reconstructable_repository()
                    variables = {
                        "executionParams": {
                            "selector": {
                                "pipelineName": pipeline_name,
                                "repositoryName": recon_repo.get_definition().name,
                                "repositoryLocationName": "<<in_process>>",
                            },
                            "runConfigData": run_config,
                            "mode": pipeline_context.mode_def.name,
                            "executionMetadata": {"runId": pipeline_context.pipeline_run.run_id},
                            "stepKeys": [step.key],
                        }
                    }

                    dask_task_name = "%s.%s" % (pipeline_name, step.key)

                    workspace = create_in_process_ephemeral_workspace(
                        pointer=pipeline_context.pipeline.get_reconstructable_repository().pointer
                    )

                    future = client.submit(
                        query_on_dask_worker,
                        workspace,
                        variables,
                        dependencies,
                        instance.get_ref(),
                        key=dask_task_name,
                        resources=get_dask_resource_requirements(step.tags),
                    )

                    execution_futures.append(future)
                    execution_futures_dict[step.key] = future

            # This tells Dask to awaits the step executions and retrieve their results to the
            # master
            for future in dask.distributed.as_completed(execution_futures):
                for step_event in future.result():
                    check.inst(step_event, DagsterEvent)

                    yield step_event