Ejemplo n.º 1
0
def learner_init(uid: str, cfg: CN) -> Learner:
    device = torch.device('cuda')
    data = get_data(cfg)

    # Ugly hack because I wanted ratios, scales
    # in fractional formats
    if type(cfg['ratios']) != list:
        ratios = eval(cfg['ratios'], {})
    else:
        ratios = cfg['ratios']
    if type(cfg['scales']) != list:
        scales = cfg['scale_factor'] * np.array(eval(cfg['scales'], {}))
    else:
        scales = cfg['scale_factor'] * np.array(cfg['scales'])

    num_anchors = len(ratios) * len(scales)

    mdl = get_default_net(num_anchors=num_anchors, cfg=cfg)
    mdl.to(device)
    if cfg.do_dist:
        mdl = torch.nn.parallel.DistributedDataParallel(
            mdl,
            device_ids=[cfg.local_rank],
            output_device=cfg.local_rank,
            broadcast_buffers=True,
            find_unused_parameters=True)
    elif not cfg.do_dist and cfg.num_gpus:
        # Use data parallel
        mdl = torch.nn.DataParallel(mdl)

    loss_fn = get_default_loss(ratios, scales, cfg)
    loss_fn.to(device)

    eval_fn = get_default_eval(ratios, scales, cfg)
    # eval_fn.to(device)
    opt_fn = partial(torch.optim.Adam, betas=(0.9, 0.99))

    learn = Learner(uid=uid,
                    data=data,
                    mdl=mdl,
                    loss_fn=loss_fn,
                    opt_fn=opt_fn,
                    eval_fn=eval_fn,
                    device=device,
                    cfg=cfg)
    return learn
def learner_init(uid, cfg):
    device_count = torch.cuda.device_count()
    device = torch.device('cuda')

    if type(cfg['ratios']) != list:
        ratios = eval(cfg['ratios'], {})
    else:
        ratios = cfg['ratios']
    if type(cfg['scales']) != list:
        scales = cfg['scale_factor'] * np.array(eval(cfg['scales'], {}))
    else:
        scales = cfg['scale_factor'] * np.array(cfg['scales'])

    num_anchors = len(ratios) * len(scales)

    qnet = get_default_net(num_anchors=num_anchors, cfg=cfg)
    qnet = qnet.to(device)
    qnet = torch.nn.DataParallel(qnet)

    qlos = get_default_loss(ratios, scales, cfg)
    qlos = qlos.to(device)
    qeval = Evaluator(ratios, scales, cfg)
    # db = get_data(bs=cfg['bs'] * device_count, nw=cfg['nw'], bsv=cfg['bsv'] * device_count,
    #               nwv=cfg['nwv'], devices=cfg['devices'], do_tfms=cfg['do_tfms'],
    #               cfg=cfg, data_cfg=data_cfg)
    # db = get_data(cfg, ds_name=cfg['ds_to_use'])
    db = get_data(cfg)
    opt_fn = partial(torch.optim.Adam, betas=(0.9, 0.99))

    # Note: Currently using default optimizer
    learn = Learner(uid=uid,
                    data=db,
                    mdl=qnet,
                    loss_fn=qlos,
                    opt_fn=opt_fn,
                    eval_fn=qeval,
                    device=device,
                    cfg=cfg)
    return learn
Ejemplo n.º 3
0
        backbone = RetinaBackBone(encoder, cfg)
    elif cfg['mdl_to_use'] == 'ssd_vgg':
        encoder = ssd_vgg.build_ssd('train', cfg=cfg)
        encoder.vgg.load_state_dict(
            torch.load('./weights/vgg16_reducedfc.pth'))
        print('loaded pretrained vgg backbone')
        backbone = SSDBackBone(encoder, cfg)
        # backbone = encoder

    zsg_net = ZSGNet(backbone, num_anchors, cfg=cfg)
    return zsg_net


if __name__ == '__main__':
    # torch.manual_seed(0)
    cfg = conf
    cfg.mdl_to_use = 'ssd_vgg'
    cfg.ds_to_use = 'refclef'
    cfg.num_gpus = 1
    # cfg.device = 'cpu'
    device = torch.device(cfg.device)
    data = get_data(cfg)

    zsg_net = get_default_net(num_anchors=9, cfg=cfg)
    zsg_net.to(device)

    batch = next(iter(data.train_dl))
    for k in batch:
        batch[k] = batch[k].to(device)
    out = zsg_net(batch)