Ejemplo n.º 1
0
    def test_write_inputimages_to_csv(self):
        all_input_rows=[]

        row1=InputRow()
        row1.imagefile="some image file 1"
        row1.total_pixels=101
        row1.black_pixels=2
        row1.salt_pepper=0.3
        row1.max_distance=4
        row1.line_count=1
        all_input_rows.append(row1)

        row2=InputRow()
        row2.imagefile="some image file 2"
        row2.total_pixels=102
        row2.black_pixels=300
        row2.salt_pepper=0.3
        row2.max_distance=2
        row2.line_count=2
        all_input_rows.append(row2)

        input_filename="test_input.csv"
        absolute_filename=self.get_absolute_filename_under_testfolder(filename=input_filename)
        CsvHelper.write_input_rows_to_csv(filename=absolute_filename,input_rows=all_input_rows)

        results_filehandle=open(absolute_filename,"r")
        actual_lines=list(results_filehandle)
        results_filehandle.close()

        self.assertEquals(len(actual_lines),1+len(all_input_rows))
        self.assertTrue("imagefile,salt_pepper,max_distance,line_count,total_pixels,black_pixels" in actual_lines[0])
        self.assertTrue(f"{row1.imagefile},{row1.salt_pepper},{row1.max_distance},{row1.line_count},{row1.total_pixels},{row1.black_pixels}" in actual_lines[1])
        self.assertTrue(f"{row2.imagefile},{row2.salt_pepper},{row2.max_distance},{row2.line_count},{row2.total_pixels},{row2.black_pixels}" in actual_lines[2])
Ejemplo n.º 2
0
    def test_read_result_images_from_csv(self):

        row1=OutputRow()
        row1.imagefile="file1.png"
        row1.outputimagefile="output1.png"
        row1.actualthreshold=1.1
        row1.thresholdfactor=11
        row1.elapsed_time=1.123
        row1.nearest_neighbour_distance_statistic=4.567
        
        results_filename="test_output.csv"
        absolute_results_filename=self.get_absolute_filename_under_testfolder(filename=results_filename)

        expected_outputrows=[row1]
        CsvHelper.write_results_to_csv(filename=absolute_results_filename,output_rows=expected_outputrows)
        actual_rows:List[OutputRow]=CsvHelper.read_result_rows_from_csv(filename=absolute_results_filename)

        self.assertEquals(len(actual_rows),1)
        self.assertEqual(row1.imagefile,actual_rows[0].imagefile)
        self.assertEqual(row1.outputimagefile,actual_rows[0].outputimagefile)
        self.assertEqual(row1.thresholdfactor,actual_rows[0].thresholdfactor)
        self.assertEqual(row1.actualthreshold,actual_rows[0].actualthreshold)
        self.assertEqual(row1.elapsed_time,actual_rows[0].elapsed_time)
        self.assertEqual(row1.nearest_neighbour_distance_statistic,actual_rows[0].nearest_neighbour_distance_statistic)
        
        pass
Ejemplo n.º 3
0
    def test_write_results_to_csv(self):
        row1=OutputRow()
        row1.imagefile="file1.png"
        row1.outputimagefile="output1.png"
        row1.actualthreshold=1.1
        row1.thresholdfactor=11
        row1.elapsed_time=1.123
        row1.nearest_neighbour_distance_statistic=4.567

        row2=OutputRow()
        row2.imagefile="file2.png"
        row2.outputimagefile="output2.png"
        row2.actualthreshold=1.1
        row2.thresholdfactor=11
        row2.elapsed_time=5.678
        row2.nearest_neighbour_distance_statistic=3.456

        results_filename="test_output.csv"
        absolute_results_filename=self.get_absolute_filename_under_testfolder(filename=results_filename)

        expected_outputrows=[row1,row2]
        CsvHelper.write_results_to_csv(filename=absolute_results_filename,output_rows=expected_outputrows)
        self.assertTrue(os.path.exists(absolute_results_filename))

        results_filehandle=open(absolute_results_filename,"r")
        actual_lines=list(results_filehandle)
        results_filehandle.close()
        
        self.assertEquals(len(actual_lines),1+len(expected_outputrows))
        self.assertTrue("inputimagefile,outputimagefile,threshold,thresholdfactor" in actual_lines[0])
        self.assertTrue(f"{row1.imagefile},{row1.outputimagefile},{row1.actualthreshold},{row1.thresholdfactor},{round(row1.nearest_neighbour_distance_statistic,3)},{round(row1.elapsed_time,3)}" in actual_lines[1])
        pass
def generate_report_for_input_csv(input_images_csvfile: str):
    input_image_folder = os.path.dirname(input_images_csvfile)
    results_csv_file = find_results_csv_from_input_csv(
        inputfilename=input_images_csvfile)
    if (results_csv_file == None):
        print(
            f"\tNo results csv found for {Util.display_leaf_folders_from_path(path=input_image_folder,count=3)}"
        )
        return

    input_rows = CsvHelper.read_input_rows_from_csv(
        filename=input_images_csvfile)
    result_rows = CsvHelper.read_result_rows_from_csv(
        filename=results_csv_file)

    view_model = ResultsViewModel(
        inputrows=input_rows,
        outputrows=result_rows,
        inputfolder=os.path.dirname(input_images_csvfile),
        resultsfolder=os.path.dirname(results_csv_file))
    html_file = generate_html_filepath_from_input(
        inputfilename=input_images_csvfile)

    report_generator = ResultsGenerator(viewmodel=view_model,
                                        filename=html_file)
    report_generator.generate_report()

    # #The code below exemplifies the structural validity
    pass
Ejemplo n.º 5
0
def generate_small_noisy_images_with_salt_pepper_rations_max_distances(
        salt_pepper_ratios: List[float], max_distances: List[float],
        sub_folder: str, lines_count: int):
    if (not sub_folder):
        raise Exception("Subfolder must be specified")

    folder_script = os.path.dirname(__file__)
    folder_results = os.path.join(folder_script, "./out/", sub_folder)
    if (os.path.exists(folder_results) == False):
        print("The folder %s was not found. Creating" % (folder_results))
        os.mkdir(folder_results)
        print("The folder %s was created" % (folder_results))
    print("Results will be generated in the output folder %s" %
          (folder_results))
    csv_output_file = os.path.join(folder_results, "input_images.csv")
    input_rows: List[InputRow] = []

    for salt_pepper in salt_pepper_ratios:
        for max_distance in max_distances:
            generator = NoisyImageGenerator(
                salt_pepper_ratio=salt_pepper,
                max_distance_between_points=max_distance,
                output_folder=folder_results,
                width=IMAGE_WIDTH,
                height=IMAGE_HEIGHT,
                max_lines=lines_count)
            generator.create_noisy_image()
            outputfile = generator.filename
            count_of_black_pixels = generator.count_of_blackpixels
            total_pixels = generator.total_pixel_count
            print(
                "\tGenerated noisy image with salt-pepper=%f, max_distance=%f , filename=%s, black_pixels=%d total_pixels=%d"
                % (salt_pepper, max_distance, outputfile,
                   count_of_black_pixels, total_pixels))

            new_row = InputRow()
            new_row.imagefile = outputfile
            new_row.total_pixels = total_pixels
            new_row.black_pixels = count_of_black_pixels
            new_row.salt_pepper = salt_pepper
            new_row.max_distance = max_distance
            new_row.line_count = lines_count
            input_rows.append(new_row)

    print("Total images generated=%d" % (len(input_rows)))
    CsvHelper.write_input_rows_to_csv(filename=csv_output_file,
                                      input_rows=input_rows)
    print("------------------------------------------------------")
Ejemplo n.º 6
0
def generate_report_for_input_csv(input_images_csvfile: str):
    input_image_folder = os.path.dirname(input_images_csvfile)
    results_csv_file = find_results_csv_from_input_csv(
        inputfilename=input_images_csvfile)
    if (results_csv_file == None):
        print(
            f"\tNo results csv found for {Util.display_leaf_folders_from_path(path=input_image_folder,count=3)}"
        )
        return

    input_rows = CsvHelper.read_input_rows_from_csv(
        filename=input_images_csvfile)
    result_rows = CsvHelper.read_result_rows_from_csv(
        filename=results_csv_file)

    #The code below exemplifies the structural validity

    #we will go with the expectation that the input rows in the CSV is in the order we desire
    for salt_pepper_key, g in groupby(input_rows, key=lambda x: x.salt_pepper):
        files_in_group = list(g)
        print(
            f"\tProcessing salt_pepper={salt_pepper_key}, found {len(files_in_group)} input files"
        )
        for file_in_group in files_in_group:
            matching_result_rows = list(
                filter(lambda x: x.imagefile == file_in_group.imagefile,
                       result_rows))
            print(
                f"\t\t{file_in_group.imagefile}...result files={len(matching_result_rows)}...max_distance={file_in_group.max_distance}"
            )
            for result_file in matching_result_rows:
                print(
                    f"\t\t\t{result_file.outputimagefile}...tfac={result_file.thresholdfactor}...threshold={result_file.actualthreshold}"
                )
                #TODO This works - you now need to find a way to present this information

    pass
Ejemplo n.º 7
0
def execute_ransac_on_files(csvfile: str, threshold_factors: List[float]):
    csv_results_file = None  # initialize this to the path of a csv file in output_folder, all results will be written here

    input_datarows = CsvHelper.read_input_rows_from_csv(filename=csvfile)
    ransac_results: List[OutputRow] = []
    new_directory_for_results = create_empty_folder_for_results(
        csvfile=csvfile)
    new_csv_file_for_results = os.path.join(new_directory_for_results,
                                            "result_image.csv")

    input_image_folder = os.path.dirname(csvfile)
    for input_datarow in input_datarows:
        for threshold_factor in threshold_factors:
            print(
                f'image={input_datarow.imagefile}, no of expected lines={input_datarow.line_count}, threshold factor={threshold_factor}'
            )
            absolute_input_file = os.path.join(input_image_folder,
                                               input_datarow.imagefile)
            (result_filename, actual_threshold, nne_statistic,
             elapsed_time) = run_ransac_on_single_image(
                 inputfilepath=absolute_input_file,
                 outputfolder=new_directory_for_results,
                 max_lines_to_find=input_datarow.line_count,
                 threshold_factor=threshold_factor)
            result = OutputRow()
            result.imagefile = input_datarow.imagefile
            result.thresholdfactor = threshold_factor
            result.outputimagefile = result_filename
            result.actualthreshold = round(actual_threshold, 2)
            result.elapsed_time = round(elapsed_time, 2)
            result.nearest_neighbour_distance_statistic = round(
                nne_statistic, 2)
            ransac_results.append(result)
            pass
    print(f"Completed processing {len(input_datarows)} image files.")
    CsvHelper.write_results_to_csv(output_rows=ransac_results,
                                   filename=new_csv_file_for_results)