Ejemplo n.º 1
0
import numpy as np
from data import colorize_image as CI
from ideepcolor import parse_args
from skimage import color
import os
import datetime
args = parse_args()

colorModel = CI.ColorizeImageCaffe()
colorModel.prep_net(args.gpu, args.color_prototxt, args.color_caffemodel)
model = colorModel
distModel = CI.ColorizeImageCaffeDist()
distModel.prep_net(args.gpu, args.dist_prototxt, args.dist_caffemodel)

import cv2
# distModel.set_image(im_rgb)
def get_input(h, w):
  im = np.zeros((h, w, 3), np.uint8)
  mask = np.zeros((h, w, 1), np.uint8)
  vis_im = np.zeros((h, w, 3), np.uint8)
  userEdits = []
  for ue in userEdits:
      ue.updateInput(im, mask, vis_im)
  im_bgr = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
  return im, mask

from skimage import color
def predict_color():  
  im, mask = get_input()
  im_mask0 = mask > 0.0
  im_mask0 = im_mask0.transpose((2, 0, 1))

if __name__ == '__main__':
    args = parse_args()

    for arg in vars(args):
        print('[%s] =' % arg, getattr(args, arg))

    if args.cpu_mode:
        args.gpu = -1

    args.win_size = int(args.win_size / 4.0) * 4  # make sure the width of the image can be divided by 4

    if args.backend == 'caffe':
        # initialize the colorization model
        colorModel = CI.ColorizeImageCaffe(Xd=args.load_size)
        colorModel.prep_net(args.gpu, args.color_prototxt, args.color_caffemodel)

        distModel = CI.ColorizeImageCaffeDist(Xd=args.load_size)
        distModel.prep_net(args.gpu, args.dist_prototxt, args.dist_caffemodel)
    elif args.backend == 'pytorch':
        colorModel = CI.ColorizeImageTorch(Xd=args.load_size,maskcent=args.pytorch_maskcent)
        colorModel.prep_net(path=args.color_model)

        distModel = CI.ColorizeImageTorchDist(Xd=args.load_size,maskcent=args.pytorch_maskcent)
        distModel.prep_net(path=args.color_model, dist=True)
    else:
        print('backend type [%s] not found!' % args.backend)

    # initialize application
    app = QApplication(sys.argv)
Ejemplo n.º 3
0
    # mask        1x256x256    binary mask of current user input (will be updated)
    # loc         2 tuple      (h,w) of where to put the user input
    # p           scalar       half-patch size
    # val         2 tuple      (a,b) value of user input
    input_ab[:, loc[0] - p:loc[0] + p + 1,
             loc[1] - p:loc[1] + p + 1] = np.array(val)[:, np.newaxis,
                                                        np.newaxis]
    mask[:, loc[0] - p:loc[0] + p + 1, loc[1] - p:loc[1] + p + 1] = 1
    return (input_ab, mask)


# Choose gpu to run the model on
gpu_id = -1

# Initialize colorization class
colorModel = CI.ColorizeImageCaffe(Xd=256)

# Load the model
colorModel.prep_net(gpu_id, './models/reference_model/deploy_nodist.prototxt',
                    './models/reference_model/model.caffemodel')

# Load the black and white image
colorModel.load_image(sys.argv[1])

# Load the colored reference image
referenceImage = getResizedImage(sys.argv[2])

# extract ab channels of the resized image
referenceImage_lab = color.rgb2lab(referenceImage)

# initialize with no user inputs