Ejemplo n.º 1
0
def structure_constraints(structureid, platform, description):
    str_qry = """select structureid from structureConstraints where structureid = ?"""
    qry_df = dbMgr.query(str_qry, (structureid,))
    constraint_df = None
    if len(qry_df['structureid']) == 0:
        if platform == 'fanduel':
            if description == 'all week without kicker':
                list_constraints = [("bound", "<=", None, 1), ("bound", ">=", None, 0), ("dot", "==", 'DST', 1),
                    ("dot", "==", 'QB', 1), ("dot", ">=", 'RB', 2), ("dot", "<=", 'RB', 3), ("dot", ">=", 'WR', 3),
                    ("dot", "<=", 'WR', 4), ("dot", ">=", 'TE', 1), ("dot", "<=", 'TE', 2), ("dot", "==", 'Flex', 7),
                    ("dot", "<=", 'salary', 60000)]
            elif description == 'all week with kicker':
                list_constraints = [("bound", "<=", None, 1), ("bound", ">=", None, 0), ("dot", "==", 'DST', 1),
                    ("dot", "==", 'QB', 1), ("dot", "==", 'RB', 2), ("dot", "==", 'WR', 3), ("dot", "==", 'TE', 1),
                    ("dot", "<=", 'salary', 60000), ("dot", "==", 'K', 1)]
        elif platform == 'draftkings':
            list_constraints = [("bound", "<=", None, 1), ("bound", ">=", None, 0), ("dot", "==", 'DST', 1),
                    ("dot", "==", 'QB', 1), ("dot", ">=", 'RB', 2), ("dot", "<=", 'RB', 3), ("dot", ">=", 'WR', 3),
                    ("dot", "<=", 'WR', 4), ("dot", ">=", 'TE', 1), ("dot", "<=", 'TE', 2), ("dot", "==", 'Flex', 7),
                    ("dot", "<=", 'salary', 50000)]
        elif platform == 'yahoo':
            list_constraints = [("bound", "<=", None, 1), ("bound", ">=", None, 0), ("dot", "==", 'DST', 1),
                                ("dot", "==", 'QB', 1), ("dot", ">=", 'RB', 2), ("dot", "<=", 'RB', 3),
                                ("dot", ">=", 'WR', 3), ("dot", "<=", 'WR', 4), ("dot", ">=", 'TE', 1),
                                ("dot", "<=", 'TE', 2), ("dot", "==", 'Flex', 7), ("dot", "<=", 'salary', 200)]
        constraint_df = pd.DataFrame(list_constraints)
    if constraint_df is not None:
        constraint_df.columns = ['type', 'operator', 'vec', 'bound']
        constraint_df['structureid'] = structureid
        dbMgr.df_insert(constraint_df, 'structureConstraints', True)
    return None
Ejemplo n.º 2
0
def load_projections(historical=False):
    for proj_source, proj_class in projections_sources.items():
        if historical:
            all_data = pd.DataFrame()
            for year in years:
                for week in weeks:
                    exist_df = dbMgr.query("""select playerid from projections proj
                                            join time t on proj.timeid = t.timeid
                                            where season = {}
                                            and week = {}
                                            and source = '{}'""".format(year, week, proj_source))
                    if len(exist_df) == 0:
                        platform_df = proj_class.get_projections(year, week)
                        if platform_df is not None:
                            platform_df['timeid'] = exp.time_search(year, week)
                            platform_df['source'] = proj_source
                            all_data = all_data.append(platform_df, ignore_index=True, sort=False)
        else:
            1 + 1
        if len(all_data) > 0:
            all_data['playerid'] = all_data.apply(lambda x: exp.player_search(x.PLAYER, dst_mode=(x.position == 'DST'),
                                                                              filters={'position': x.position,
                                                                                       'year': x.year,
                                                                                       'team': x.TEAM},
                                                                              auto_insert=True, source=proj_source,
                                                                              sourceid=x.SOURCE, allow_missing=True),
                                                  axis=1)
            all_data = all_data[all_data['playerid'].notnull()]
            stats = list(set(sum(proj_class.positions.values(), [])).union({'FPTS_HALF', 'FPTS_STD', 'FPTS_FULL'}))
            stacked_df = all_data.groupby(['timeid', 'playerid', 'source'])[stats].mean().stack().dropna().reset_index()
            stacked_df.columns = ['timeid', 'playerid', 'source', 'statistic', 'value']
            dbMgr.df_insert(stacked_df, 'projections', True)
    return None
Ejemplo n.º 3
0
def load_ownership(historical=False):
    if historical:
        dates = dbMgr.query("""select distinct date, season from games g 
                        join time t on g.timeid = t.timeid order by date""")
        all_dates = dates[dates['date'] > '2016-09-10'].set_index('date', verify_integrity=True)['season']
        import pickle
        with open('ownership.pickle', 'rb') as handle:
            test_data = pickle.load(handle)
        day_df = {}
        for key in test_data.keys():
            if (test_data[key][0] is not None) and (pd.to_datetime(key).day_name() == 'Sunday'):
                possible_keys = [x for x in test_data[key][0].keys() if
                                 ('Classic' in x or 'SalaryCap' in x) and '1:00 pm' in x]
                if len(possible_keys) > 0:
                    temp_max = 0
                    temp_contest = None
                    for pk in possible_keys:
                        if test_data[key][0][pk].shape[0] > temp_max:
                            temp_max = test_data[key][0][pk].shape[0]
                            temp_contest = pk
                    if temp_contest is not None:
                        if len(test_data[key][1][temp_contest]) > 100:
                            day_df[key] = temp_contest
        for dd, val in day_df.items():
            contest_df = test_data[dd][0][val]
            ownership_df = test_data[dd][1][val]
            ownership_df.columns = [x.replace('$', '').replace(',', '') for x in ownership_df.columns]
            exclude_contests = contest_df['Name'].value_counts()[contest_df['Name'].value_counts() > 1].index
            filtered_df = ownership_df[ownership_df['Avg'] > 0.0001].drop(exclude_contests, axis=1, errors='ignore')
            valid_contests = [x for x in filtered_df.columns if x not in ['Player', 'Pos', 'Avg', 'Fpts']]
            valid_df = contest_df[
                contest_df['Name'].isin(valid_contests) & -contest_df['Name'].isin(exclude_contests)].drop_duplicates()
            timeid = exp.time_search(date=dd)
            structureid = exp.structure_search('draftkings', 'FULL', 'all week without kicker')
            valid_df['contestid'] = valid_df.apply(lambda x: exp.contest_insert(x.Link, timeid, structureid), axis=1)
            link_map = valid_df.set_index('Name')['contestid']
            pivoted_df = valid_df.set_index('contestid').drop(['Name', 'Link', 'Winner'],
                                                              axis=1).unstack().reset_index()
            pivoted_df.columns = ['stat', 'contestid', 'value']
            dbMgr.df_insert(pivoted_df[['contestid', 'stat', 'value']], 'contestStats', True)
            filtered_df = filtered_df[['Player', 'Pos', 'Avg', 'Fpts']+list(link_map.keys())]
            filtered_df.columns = [link_map[x]
                                   if x in valid_contests
                                   else x for x in filtered_df.columns]
            filtered_df['playerid'] = filtered_df.apply(
                lambda x: exp.player_search(x.Player, dst_mode=(x.Pos == 'DST'),
                                            filters={'position': x.Pos,
                                                     'year': all_dates[dd],
                                                     'points': x.Fpts,
                                                     'platform': 'dk',
                                                     'date': dd},
                                            auto_insert=True, allow_missing=True), axis=1)
            player_df = filtered_df.set_index('playerid').drop(['Player', 'Pos', 'Avg', 'Fpts'], axis=1)
            stacked_df = player_df.replace(0.0, np.nan).unstack().dropna().reset_index().drop_duplicates()
            stacked_df.columns = ['contestid', 'playerid', 'value']
            dbMgr.df_insert(stacked_df[['contestid', 'playerid', 'value']], 'contestOwnership', True)
    else:
        1 + 1
    return None
Ejemplo n.º 4
0
def load_game_logs(historical=False):
    if historical:
        players_df = dbMgr.query("""select playerid, link, name from players
                                    where playerid not in (
                                    select distinct playerid from playsForTeam)""")
        for ix, row in players_df.iterrows():
            team = False
            if row['link'].startswith('https://www.pro-football-reference.com/teams/'):
                team = True
            gamelog_df, position = pfr.get_game_log(row['link'])
            if len(gamelog_df) > 0:
                gamelog_df['playerid'] = row['playerid']
                gamelog_df['timeid'] = gamelog_df.apply(lambda x: exp.time_search(x.year_id, x.week_num), axis=1)
                gamelog_df['teamid'] = gamelog_df['team'].apply(lambda x: exp.team_search(x))
                gamelog_df['oppid'] = gamelog_df['opp'].apply(lambda x: exp.team_search(x))
                gamelog_df['hometeamid'] = gamelog_df.apply(lambda x: exp.team_search(x.opp) if x.game_location == '@'
                else exp.team_search(x.team), axis=1)
                gamelog_df['awayteamid'] = gamelog_df.apply(lambda x: exp.team_search(x.team) if x.game_location == '@'
                else exp.team_search(x.opp), axis=1)
                if team:
                    gamelog_df['gameid'] = gamelog_df.apply(lambda x: exp.game_insert(x.boxscore_word_link, x.timeid,
                                                                                      x.hometeamid, x.awayteamid,
                                                                                      x.game_date), axis=1)
                else:
                    gamelog_df['gameid'] = gamelog_df.apply(lambda x: exp.game_insert(x.game_result_link, x.timeid,
                                                                                      x.hometeamid, x.awayteamid,
                                                                                      x.game_date), axis=1)
                dbMgr.df_insert(gamelog_df[['gameid', 'playerid', 'teamid', 'oppid']], 'playsForTeam', True)
                if not team:
                    stats = ['age', 'fumbles', 'fumbles_forced', 'fumbles_lost', 'fumbles_rec_td', 'fumbles_rec_yds',
                             'pass_att', 'pass_cmp', 'pass_int', 'pass_rating', 'pass_sacked', 'pass_sacked_yds',
                             'pass_td',
                             'pass_yds', 'rec', 'rec_td', 'rec_yds', 'rush_att', 'rush_td', 'rush_yds', 'targets']
                    indexer = ['gameid', 'playerid']
                    stacked_df = gamelog_df.reindex(columns=(stats + indexer)).astype(float).groupby(
                        ['gameid', 'playerid']).mean().stack().dropna().reset_index()
                    stacked_df.columns = ['gameid', 'playerid', 'stat', 'value']
                    dbMgr.df_insert(stacked_df, 'gameLog', True)
    else:
        1 + 1
    return None
Ejemplo n.º 5
0
def load_salaries(historical=False):
    if historical:
        all_data = pd.DataFrame()
        for year in years:
            for week in weeks:
                for plat in platforms:
                    platform_df = rg.get_platform_data(plat, year, week)
                    if platform_df is not None:
                        platform_df['time_id'] = exp.time_search(year, week)
                        if plat == 'draftkings':
                            scoring_mode = 'FULL'
                        elif plat in ('yahoo', 'fanduel'):
                            scoring_mode = 'HALF'
                        if (year < 2018) and (plat == 'fanduel'):
                            platform_df['structureid'] = exp.structure_search(plat, scoring_mode,
                                                                              'all week with kicker')
                        else:
                            platform_df['structureid'] = exp.structure_search(plat, scoring_mode,
                                                                              'all week without kicker')
                        all_data = all_data.append(platform_df, ignore_index=True, sort=False)
    else:
        1 + 1
    loop_df = {}
    for ix, row in all_data.iterrows():
        row_df = {}
        dst_mode = row['Pos'] == 'DST'
        filters = {'year': row['Year'], 'team': row['Team'], 'position': row['Pos']}
        row_df['playerid'] = exp.player_search(row['Name'], dst_mode=dst_mode, filters=filters, auto_insert=True)
        row_df['structureid'] = row['structureid']
        row_df['timeid'] = row['time_id']
        row_df['position'] = row['Pos']
        row_df['salary'] = row['salary']
        row_df['points'] = row['points']
        loop_df[ix] = row_df
    loop_df = pd.DataFrame(loop_df).T
    dbMgr.df_insert(loop_df, 'contestPlayers', True)
    return None