Ejemplo n.º 1
0
    # save results
    cPickle.dump(joints,
                 open(
                     "./eval/{}/result_{}_{}.pkl".format(
                         eval_prefix,
                         os.path.split(__file__)[1], eval_prefix), "wb"),
                 protocol=cPickle.HIGHEST_PROTOCOL)

    print "Testing baseline"

    #################################
    # BASELINE
    # Load the evaluation
    data_baseline = di.loadBaseline(
        '../data/NYU/test/test_predictions.mat',
        numpy.concatenate([
            numpy.asarray([j.gt3Dorig for j in testSeqs[0].data]),
            numpy.asarray([j.gt3Dorig for j in testSeqs[1].data])
        ]))

    hpe_base = NYUHandposeEvaluation(
        gt3D,
        numpy.asarray(data_baseline)[:, 13, :].reshape((len(gt3D), 1, 3)))
    hpe_base.subfolder += '/' + eval_prefix + '/'
    print("Mean error: {}mm".format(hpe_base.getMeanError()))

    com = [j.com for j in testSeqs[0].data]
    com.extend([j.com for j in testSeqs[1].data])
    hpe_com = NYUHandposeEvaluation(
        gt3D,
        numpy.asarray(com).reshape((len(gt3D), 1, 3)))
    hpe_com.subfolder += '/' + eval_prefix + '/'
Ejemplo n.º 2
0
        [hpe.getJointMaxError(j) for j in range(joints[0].shape[0])]))

    # save results
    cPickle.dump(joints,
                 open(
                     "./eval/{}/result_{}_{}.pkl".format(
                         eval_prefix,
                         os.path.split(__file__)[1], eval_prefix), "wb"),
                 protocol=cPickle.HIGHEST_PROTOCOL)

    print "Testing baseline"

    #################################
    # BASELINE
    # Load the evaluation
    data_baseline = di.loadBaseline('../data/NYU/test/test_predictions.mat',
                                    numpy.asarray(gt3D))

    hpe_base = NYUHandposeEvaluation(gt3D, data_baseline)
    hpe_base.subfolder += '/' + eval_prefix + '/'
    print("Mean error: {}mm".format(hpe_base.getMeanError()))
    hpe.plotEvaluation(eval_prefix,
                       methodName='Our regr',
                       baseline=[('Tompson et al.', hpe_base)])

    ind = 0
    for i in testSeqs[0].data:
        if ind % 20 != 0:
            ind += 1
            continue
        jtI = transformPoints2D(di.joints3DToImg(joints[ind]), i.T)
        hpe.plotResult(i.dpt, i.gtcrop, jtI, "{}_{}".format(eval_prefix, ind))
Ejemplo n.º 3
0
    if ABLATION:
        # plot list
        plot_list = zip(['Basic', 'Spatial', 'Temporal', 'Final'], hpe)

        # plot ablation result
        # NOTE: figure is in mix_100000 folder
        hpe[-1].plotEvaluation('ablation',
                               methodName='Final',
                               baseline=plot_list[:-1])
    else:
        # plot list
        plot_list = []

        # Comparison
        # siggraph
        data_siggrpah = di.loadBaseline(
            '../dataset/NYU/test/test_predictions.mat', np.asarray(gt3D))

        hpe_siggrpah = NYUHandposeEvaluation(gt3D, data_siggrpah)
        hpe_siggrpah.subfolder += 'comparison/'
        print("Tompson et al. Siggraph 2014")
        print("Mean error: {}mm".format(hpe_siggrpah.getMeanError()))
        plot_list.append(('HeatMap', hpe_siggrpah))

        # cvww15 deeppriori
        data_deeppriori = di.loadBaseline(
            '../result/CVWW15/CVWW15_NYU_Prior-Refinement.txt')
        hpe_deeppriori = NYUHandposeEvaluation(gt3D, data_deeppriori)
        hpe_deeppriori.subfolder += 'comparison/'
        print("Oberweger et al. CVWW 2015")
        print("Mean error: {}mm".format(hpe_deeppriori.getMeanError()))
        plot_list.append(('DeepPrior', hpe_deeppriori))