def plot_feat(self, test_loader, cache_dir, model_file=''): from analysis.plot_feat_tsne import PlotTSNE test = CommentDataset(self.args, test_loader, cache_dir, self.dataname, self.device, self.tokenizer) test_iter = Iterator(test, batch_size=len(test), device=self.device, shuffle=False) # 1651 model_path = os.path.join(self.args.savepath, model_file) if os.path.exists(model_path): print('Plotting feature for {}'.format(model_file)) self.model.load_state_dict(torch.load(model_path, map_location=lambda storage, loc: storage)['model'], strict=False) plottsne = PlotTSNE(self.args, self.model) plottsne.plot(test_iter, model_file.split('_')[0]) else: best_model = os.path.join(self.args.savepath, 'best_model.pt') if os.path.exists(best_model): print('Ploting feature for best_model.pt') self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model'], strict=False) plottsne = PlotTSNE(self.args, self.model) plottsne.plot(test_iter, 'best') for epoch in range(0, self.maxepoch, 1): model_path= os.path.join(self.args.savepath, '{}_model.pt'.format(epoch)) if os.path.exists(model_path): print('Plotting feature for epoch {}_model.pt'.format(epoch)) self.model.load_state_dict(torch.load(model_path, map_location=lambda storage, loc: storage)['model'], strict=False) plottsne = PlotTSNE(self.args, self.model) plottsne.plot(test_iter, str(epoch))
def build_data(self, loader): """ Build polluted textgraph by adversarial trained generator""" print("Build Pollued data by adv model from {}".format(self.args.savepath)) test = TreeDataset(self.args, loader, self.dataname, self.device, self.tokenizer) data_iter = Iterator(test, train=False, device=self.device, batch_size=len(test), sort_key=lambda x: len(x.src), sort_within_batch=False) best_adv_model = os.path.join(self.args.savepath, 'best_adv_model.pt') self.model.load_state_dict(torch.load(best_adv_model, map_location=lambda storage, loc: storage)['model']) predictor = build_predictor(self.args, self.model, self.tokenizer, self.symbols, logger) predictor.build(data_iter)
def test_detector(self, loader, run_gen=False, portion='all'): """ Testing detector """ test = TreeDataset(self.args, loader, self.dataname, self.device, self.tokenizer) #test = CommentDataset(self.args, loader, self.dataname, self.device, self.tokenizer) data_iter = Iterator(test, train=False, device=self.device, batch_size=len(test) if len(test)<self.bs else self.bs, sort_key=lambda x: len(x.src), sort_within_batch=False) # Define trainer train_loss = abs_loss(self.args.label_num, self.maxepoch, self.device, train=False) trainer = build_trainer(self.args, self.model, self.optim, train_loss) logger.info('Test on best model (stage-1)') best_model = os.path.join(self.args.savepath, 'best_model.pt') if os.path.exists(best_model): try: self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model']) except: self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model'], strict=False) logger.info('[Warning] The keys in state dict do not strictly match') test_stat = trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=False, info="Without Generated Response >>", write_type="w") test_stat.write_results(os.path.join(self.args.savepath, 'result_test.csv'), 'test-'+portion, self.args.label_num) if self.args.test_adv: logger.info('Test on adversarially-trained model (stage-2)') best_model = os.path.join(self.args.savepath, 'best_adv_model.pt') if os.path.exists(best_model): try: self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model']) except: self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model'], strict=False) logger.info('[Warning] The keys in state dict do not strictly match') test_stat = trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=True, info="\nWith Generated Response from {} >>".format(best_model.split("/")[-1]), write_type=="a") predictor = build_predictor(self.args, self.model, self.tokenizer, self.symbols, logger) predictor.translate(data_iter, 'best', have_gold=False)
def exp(self, loader, exp_pos=False): """ Testing detector """ test = TreeDataset(self.args, loader, self.dataname, self.device, self.tokenizer) data_iter = Iterator(test, train=False, device=self.device, batch_size=self.bs, sort_key=lambda x: len(x.src), sort_within_batch=False) best_model = os.path.join(self.args.savepath, 'best_adv_model.pt') # Define trainer loss = abs_loss(self.args.label_num, self.maxepoch, self.device, train=False) trainer = build_trainer(self.args, self.model, self.optim, loss) test_stats = trainer.testing(data_iter, -1) if exp_pos: if os.path.exists(best_model): self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model'], strict=True) test_stat = trainer.exp_pos(data_iter)
def inference_save_by_id(self, loader, cache_dir, model_file): datalist = CommentDataset(self.args, loader, cache_dir, self.dataname, self.device, self.tokenizer) data_iter = Iterator(datalist, batch_size=len(datalist), device=self.device, shuffle=False) # 1651 if model_file: print('Model is loaded from ', model_file) if logger: logger.info('Model is from {}'.format(model_file)) model_path = os.path.join(self.savepath, model_file) self.model.load_state_dict(torch.load(model_path, map_location=lambda storage, loc: storage)['model'], strict=False) else: print('Not loading pretrained model...') if logger: logger.info('Not loading pretrained model ...') try: print('[Warning] Going to delete the original temp file at ', self.args.savepath) shutil.rmtree(self.args.savepath+'/temp') except: print('Creating new temp folder') os.makedirs(os.path.join(self.args.savepath, 'temp'), exist_ok=True) os.makedirs(os.path.join(self.args.savepath, 'temp_gold'), exist_ok=True) self.predictor.translate(data_iter, model_file, cal_rouge=False, save=False, save_by_id=True)
def forward(self, train_loader, val_loader, test_loader, maxepoch=None): """ Normal training process """ # Build data iterator for generator (One node on the tree is converted to one data) #train = TreeDataset(self.args, train_loader, self.dataname, self.device, self.tokenizer) train = CommentDataset(self.args, train_loader, self.dataname, self.device, self.tokenizer) sample_per_cls = None #sample_per_cls = train.sample_per_cls(self.args.label_num) train_iter = BucketIterator(train, sort_key=lambda x: len(x.src), sort_within_batch=False, batch_size=self.bs, device=self.device) #val = TreeDataset(self.args, val_loader, self.dataname, self.device, self.tokenizer) val = CommentDataset(self.args, val_loader, self.dataname, self.device, self.tokenizer) val_iter = BucketIterator(val, sort_key=lambda x: len(x.src), sort_within_batch=False, batch_size=96, device=self.device) test = TreeDataset(self.args, test_loader, self.dataname, self.device, self.tokenizer) test_iter = Iterator(test, train=False, device=self.device, batch_size=96, sort_key=lambda x: len(x.src), sort_within_batch=False) # Define trainer if self.args.train_gen: train_loss = abs_loss(self.args.label_num, self.maxepoch, self.device, True, self.args.train_gen ,self.model.generator, self.symbols, self.model.vocab_size, self.args.label_smoothing, sample_per_cls=sample_per_cls) else: train_loss = abs_loss(self.args.label_num, self.maxepoch, self.device, True, sample_per_cls = sample_per_cls) trainer = build_trainer(self.args, self.model, self.optim, train_loss, wandb=self.wandb) # Start training best_loss = 10 stop_count = 0 tot_train_steps = self.maxepoch * len(train_iter) gen_flag = self.args.train_gen or self.args.test_gen if not maxepoch: maxepoch = self.maxepoch logger.info('Start training') for epoch in range(maxepoch): print('[Training] {}/{}'.format(epoch, self.maxepoch)) if self.args.train_gen: job = 'gen det' else: job = 'det' message = '{}-{} epoch {} {}/{} '.format(self.dataname, self.fold, job, epoch, self.maxepoch) trainer.train(train_iter, tot_train_steps, message) val_stats = trainer.validate(val_iter, epoch) test_stats = trainer.testing(test_iter, epoch, gen_flag=gen_flag) test_stats.write_results(os.path.join(self.args.savepath, 'result_test.csv'), str(epoch), self.args.label_num) val_det_loss = val_stats.det_xent() # Save best model if val_det_loss < best_loss: print('Save model at epoch {}'.format(epoch)) trainer._save('best') best_loss = val_det_loss stop_count = 0 else: stop_count += 1
def inference_for_demo(self, loader, run_gen=False, portion='all', level=3): """ Testing detector """ test = TreeDataset(self.args, loader, self.dataname, self.device, self.tokenizer) data_iter = Iterator(test, train=False, device=self.device, batch_size=len(test) if len(test)<self.bs else self.bs, sort_key=lambda x: len(x.src), sort_within_batch=False) # Define trainer train_loss = abs_loss(self.args.label_num, self.maxepoch, self.device, train=False) trainer = build_trainer(self.args, self.model, self.optim, train_loss) if level == 1: logger.info('Test on detection model (stage-1)') best_model = os.path.join(self.args.savepath, 'best_model.pt') ckpt = torch.load(best_model, map_location=lambda storage, loc: storage)['model'] try: self.model.load_state_dict(ckpt) except: mismatch = self.model.load_state_dict(ckpt, strict=False) print(mismatch) logger.info('[Warning] The keys in state dict do not strictly match') trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=False, info="{}".format(best_model.split("/")[-1]), write_type="w") logger.info('Test on final model (stage-3)') best_model = os.path.join(self.args.savepath, 'best_final_model.pt') ckpt = torch.load(best_model, map_location=lambda storage, loc: storage)['model'] try: self.model.load_state_dict(ckpt) except: mismatch = self.model.load_state_dict(ckpt, strict=False) print(mismatch) logger.info('[Warning] The keys in state dict do not strictly match') trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=False, info="{}".format(best_model.split("/")[-1]), write_type="a") if level >= 2: logger.info('Test on adv model (stage-2)') best_model = os.path.join(self.args.savepath, 'best_adv_model.pt') ckpt = torch.load(best_model, map_location=lambda storage, loc: storage)['model'] try: self.model.load_state_dict(ckpt) except: mismatch = self.model.load_state_dict(ckpt, strict=False) print(mismatch) logger.info('[Warning] The keys in state dict do not strictly match') # Test without generated response trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=False, info="{}".format(best_model.split("/")[-1]), write_type="w") # Test with generated response _, wrongs_before = trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=True, info="{} With Generated Response".format(best_model.split("/")[-1]), write_type="a", output_wrong_pred=True) predictor = build_predictor(self.args, self.model, self.tokenizer, self.symbols, logger) predictor.translate(data_iter, 'best', have_gold=False, info="{} With Generated Response".format(best_model.split("/")[-1])) if level >= 3: logger.info('Test on final model (stage-3)') best_model = os.path.join(self.args.savepath, 'best_model.pt') ckpt = torch.load(best_model, map_location=lambda storage, loc: storage)['model'] #ckpt['classifier.pooler.conv.lin.weight'] = ckpt['classifier.pooler.conv.weight'] try: self.model.load_state_dict(ckpt) except: mismatch = self.model.load_state_dict(ckpt, strict=False) print(mismatch) logger.info('[Warning] The keys in state dict do not strictly match') # Test without generated response trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=False, info="{}".format(best_model.split("/")[-1]), write_type="a") # Test with generated response _, wrongs_after = trainer.testing(data_iter, tokenizer=self.tokenizer, gen_flag=True, info="{} With Generated Response".format(best_model.split("/")[-1]), write_type="a", output_wrong_pred=True) predictor = build_predictor(self.args, self.model, self.tokenizer, self.symbols, logger) predictor.translate(data_iter, 'best', have_gold=False, info="{} With Generated Response".format(best_model.split("/")[-1])) # Find the data that are successfully attack and fixed fixed = [] for i in wrongs_before: if i not in wrongs_after: fixed.append(str(i)) wrongs_before = [str(i) for i in wrongs_before] with open(os.path.join(self.args.savepath, "id_fixed.txt"), "w") as f: f.write("\n".join(fixed)) with open(os.path.join(self.args.savepath, "id_attack_success.txt"), "w") as f: f.write("\n".join(wrongs_before))
def train_adv(self, train_loader, val_loader, test_loader): """ Adversarially training process""" ## Step1. Train detector and generator best_model = os.path.join(self.args.savepath, 'best_model.pt') if not os.path.exists(best_model): self.forward(train_loader, val_loader, test_loader, maxepoch=3) logger.info('Loading pre-trained genearator and detector') self.model.load_state_dict(torch.load(best_model, map_location=lambda storage, loc: storage)['model']) ## Step2. Train adv generator and fix detector # Load checkpoint best_adv_model = os.path.join(self.args.savepath, 'best_adv_model.pt') if os.path.exists(best_adv_model): logger.info('Loading pre-trained adv genearator') self.model.load_state_dict(torch.load(best_adv_model, map_location=lambda storage, loc: storage)['model']) else: logger.info('Adversarially train generator -----------------------') train = CommentDataset(self.args, train_loader, self.dataname, self.device, self.tokenizer, reverse_label=True) val = CommentDataset(self.args, val_loader, self.dataname, self.device, self.tokenizer, reverse_label=True) train_iter, val_iter = BucketIterator.splits((train, val), sort_key=lambda x: len(x.src), sort_within_batch=False, batch_size=self.bs, device=self.device) # 3906, 977 test = TreeDataset(self.args, test_loader, self.dataname, self.device, self.tokenizer) test_iter = Iterator(test, train=False, device=self.device, batch_size=self.bs, sort_key=lambda x: len(x.src), sort_within_batch=False) # Define trainer train_loss = abs_loss(self.args.label_num, self.maxepoch, self.device, True, self.args.train_gen ,self.model.generator, self.symbols, self.model.vocab_size, self.args.label_smoothing) trainer = build_trainer(self.args, self.model, self.optim, train_loss, wandb=self.wandb) tot_train_steps = self.maxepoch * len(train_iter) test_stats = trainer.testing(test_iter, -1, gen_flag=True) test_stats.write_results(os.path.join(self.args.savepath, 'result_test.csv'), 'Before', self.args.label_num) # Freeze the detector for param in self.model.parameters(): param.requires_grad = False for param in self.model.decoder.parameters(): param.requires_grad = True best_total_loss = 100 lowest_acc = 1 stop_count = 0 for epoch in range(self.maxepoch): print('[Adv train generator - fold {}] {}/{}'.format(self.fold, epoch, self.maxepoch)) message = '{}-{} epoch {}/{} adv gen'.format(self.dataname, self.fold, epoch, 4) trainer.train(train_iter, tot_train_steps, message) val_stats = trainer.validate(val_iter, epoch) test_stats = trainer.testing(test_iter, epoch, gen_flag=False) test_stats = trainer.testing(test_iter, epoch, gen_flag=True) # polluted data test_stats.write_results(os.path.join(self.args.savepath, 'result_test.csv'), '{}-att'.format(epoch), self.args.label_num) #Save best model if test_stats.det_acc() < lowest_acc: logger.info('Save Adv model at epoch {}'.format(epoch)) lowest_acc = test_stats.det_acc() trainer._save('best_adv') stop_count = 0 else: stop_count += 1 if stop_count == 3: break ## Step3. Train adv detector and fix generator logger.info('Adversarially train detector ---------------------------') train = CommentDataset(self.args, train_loader, self.dataname, self.device, self.tokenizer) val = CommentDataset(self.args, val_loader, self.dataname, self.device, self.tokenizer) train_iter, val_iter = BucketIterator.splits((train, val), sort_key=lambda x: len(x.src), sort_within_batch=False, batch_size=self.bs, device=self.device) # 3906, 977 test = TreeDataset(self.args, test_loader, self.dataname, self.device, self.tokenizer) test_iter = Iterator(test, train=False, device=self.device, batch_size=self.bs, sort_key=lambda x: len(x.src), sort_within_batch=False) # Load checkpoint best_adv_model = os.path.join(self.args.savepath, 'best_adv_model.pt') self.model.load_state_dict(torch.load(best_adv_model, map_location=lambda storage, loc: storage)['model']) # Freeze the generator for param in self.model.parameters(): param.requires_grad = False for param in self.model.classifier.parameters(): param.requires_grad = True for param in self.model.bert.parameters(): param.requires_grad = True # Define trainer optim = [build_optim(self.args, self.model, None)] train_loss = abs_loss(self.args.label_num, self.maxepoch, self.device, True, False ,self.model.generator, self.symbols, self.model.vocab_size, self.args.label_smoothing) trainer = build_trainer(self.args, self.model, optim, train_loss, wandb=self.wandb) test_stats = trainer.testing(test_iter, -1, gen_flag=False) # clean data test_stats = trainer.testing(test_iter, -1, gen_flag=True) # polluted data tot_train_steps = self.maxepoch * len(train_iter) best_xent = 10 stop_count = 0 for epoch in range(self.maxepoch): print('[Adv train detector] {}/{}'.format(epoch, self.maxepoch)) # Freeze the detector message = '{}-{} epoch {}/{} adv det'.format(self.dataname, self.fold, epoch, 5) trainer.train(train_iter, tot_train_steps, message) val_stats = trainer.validate(val_iter, epoch) test_stats = trainer.testing(test_iter, epoch, gen_flag=False) # clean data test_stats = trainer.testing(test_iter, epoch, gen_flag=True) # polluted data test_stats.write_results(os.path.join(self.args.savepath, 'result_test.csv'), '{}-adv'.format(epoch), self.args.label_num) # Save best model if val_stats.det_xent() < best_xent: print('Save model at epoch {}'.format(epoch)) trainer._save('best_final') best_xent = val_stats.det_xent() stop_count = 0 else: stop_count += 1 if stop_count == 3: break