Ejemplo n.º 1
0
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)

            if args.cuda:
                inputs = inputs.cuda()

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            loss = criterion(out, targets, output_sizes, target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch

            inf = float("inf")
            if args.distributed:
                loss_value = reduce_tensor(loss, args.world_size)[0]
            else:
                loss_value = loss.item()
            if loss_value == inf or loss_value == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
            # SGD step
Ejemplo n.º 2
0
def train_main(args):
    args.distributed = args.world_size > 1
    main_proc = True
    if args.distributed:
        if args.gpu_rank:
            torch.cuda.set_device(int(args.gpu_rank))
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)
        main_proc = args.rank == 0  # Only the first proc should save models
    save_folder = args.save_folder

    loss_results, cer_results, wer_results = torch.Tensor(args.epochs), torch.Tensor(args.epochs), torch.Tensor(
        args.epochs)
    best_wer = None
    if args.visdom and main_proc:
        from visdom import Visdom

        viz = Visdom()
        opts = dict(title=args.id, ylabel='', xlabel='Epoch', legend=['Loss', 'WER', 'CER'])
        viz_window = None
        epochs = torch.arange(1, args.epochs + 1)
    if args.tensorboard and main_proc:
        os.makedirs(args.log_dir, exist_ok=True)
        from tensorboardX import SummaryWriter

        tensorboard_writer = SummaryWriter(args.log_dir)
    os.makedirs(save_folder, exist_ok=True)

    avg_loss, start_epoch, start_iter = 0, 0, 0
    if args.continue_from:  # Starting from previous model
        print("Loading checkpoint model %s" % args.continue_from)
        package = torch.load(args.continue_from, map_location=lambda storage, loc: storage)
        model = DeepSpeech.load_model_package(package)
        labels = DeepSpeech.get_labels(model)
        audio_conf = DeepSpeech.get_audio_conf(model)
        parameters = model.parameters()
        optimizer = torch.optim.SGD(parameters, lr=args.lr,
                                    momentum=args.momentum, nesterov=True)
        if not args.finetune:  # Don't want to restart training
            if args.cuda:
                model.cuda()
            optimizer.load_state_dict(package['optim_dict'])
            start_epoch = int(package.get('epoch', 1)) - 1  # Index start at 0 for training
            start_iter = package.get('iteration', None)
            if start_iter is None:
                start_epoch += 1  # We saved model after epoch finished, start at the next epoch.
                start_iter = 0
            else:
                start_iter += 1
            avg_loss = int(package.get('avg_loss', 0))
            loss_results, cer_results, wer_results = package['loss_results'], package[
                'cer_results'], package['wer_results']
            if main_proc and args.visdom and \
                            package[
                                'loss_results'] is not None and start_epoch > 0:  # Add previous scores to visdom graph
                x_axis = epochs[0:start_epoch]
                y_axis = torch.stack(
                    (loss_results[0:start_epoch], wer_results[0:start_epoch], cer_results[0:start_epoch]),
                    dim=1)
                viz_window = viz.line(
                    X=x_axis,
                    Y=y_axis,
                    opts=opts,
                )
            if main_proc and args.tensorboard and \
                            package[
                                'loss_results'] is not None and start_epoch > 0:  # Previous scores to tensorboard logs
                for i in range(start_epoch):
                    values = {
                        'Avg Train Loss': loss_results[i],
                        'Avg WER': wer_results[i],
                        'Avg CER': cer_results[i]
                    }
                    tensorboard_writer.add_scalars(args.id, values, i + 1)
    else:
        with open(args.labels_path) as label_file:
            labels = str(''.join(json.load(label_file)))

        audio_conf = dict(sample_rate=args.sample_rate,
                          window_size=args.window_size,
                          window_stride=args.window_stride,
                          window=args.window,
                          noise_dir=args.noise_dir,
                          noise_prob=args.noise_prob,
                          noise_levels=(args.noise_min, args.noise_max))

        rnn_type = args.rnn_type.lower()
        assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"
        model = DeepSpeech(rnn_hidden_size=args.hidden_size,
                           nb_layers=args.hidden_layers,
                           labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=args.bidirectional)
        parameters = model.parameters()
        optimizer = torch.optim.SGD(parameters, lr=args.lr,
                                    momentum=args.momentum, nesterov=True)
    criterion = CTCLoss()
    decoder = GreedyDecoder(labels)
    train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.train_manifest, labels=labels,
                                       normalize=True, augment=args.augment)
    test_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=args.val_manifest, labels=labels,
                                      normalize=True, augment=False)
    if not args.distributed:
        train_sampler = BucketingSampler(train_dataset, batch_size=args.batch_size)
    else:
        train_sampler = DistributedBucketingSampler(train_dataset, batch_size=args.batch_size,
                                                    num_replicas=args.world_size, rank=args.rank)
    train_loader = AudioDataLoader(train_dataset,
                                   num_workers=args.num_workers, batch_sampler=train_sampler)
    test_loader = AudioDataLoader(test_dataset, batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    if (not args.no_shuffle and start_epoch != 0) or args.no_sorta_grad:
        print("Shuffling batches for the following epochs")
        train_sampler.shuffle(start_epoch)

    if args.cuda:
        model.cuda()
        if args.distributed:
            model = torch.nn.parallel.DistributedDataParallel(model,
                                                              device_ids=(int(args.gpu_rank),) if args.rank else None)

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(start_epoch, args.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        for i, (data) in enumerate(train_loader, start=start_iter):
            if i == len(train_sampler):
                break
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)

            if args.cuda:
                inputs = inputs.cuda()

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            loss = criterion(out, targets, output_sizes, target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch

            inf = float("inf")
            if args.distributed:
                loss_value = reduce_tensor(loss, args.world_size)[0]
            else:
                loss_value = loss.item()
            if loss_value == inf or loss_value == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
            # SGD step
            optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if not args.silent:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                    (epoch + 1), (i + 1), len(train_sampler), batch_time=batch_time, data_time=data_time, loss=losses))
            if args.checkpoint_per_batch > 0 and i > 0 and (i + 1) % args.checkpoint_per_batch == 0 and main_proc:
                file_path = '%s/deepspeech_checkpoint_epoch_%d_iter_%d.pth' % (save_folder, epoch + 1, i + 1)
                print("Saving checkpoint model to %s" % file_path)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, iteration=i,
                                                loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results, avg_loss=avg_loss),
                           file_path)
            del loss
            del out
        avg_loss /= len(train_sampler)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=avg_loss))

        start_iter = 0  # Reset start iteration for next epoch
        total_cer, total_wer = 0, 0
        model.eval()
        with torch.no_grad():
            for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)):
                inputs, targets, input_percentages, target_sizes = data
                input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

                # unflatten targets
                split_targets = []
                offset = 0
                for size in target_sizes:
                    split_targets.append(targets[offset:offset + size])
                    offset += size

                if args.cuda:
                    inputs = inputs.cuda()

                out, output_sizes = model(inputs, input_sizes)

                decoded_output, _ = decoder.decode(out.data, output_sizes)
                target_strings = decoder.convert_to_strings(split_targets)
                wer, cer = 0, 0
                for x in range(len(target_strings)):
                    transcript, reference = decoded_output[x][0], target_strings[x][0]
                    wer += decoder.wer(transcript, reference) / float(len(reference.split()))
                    cer += decoder.cer(transcript, reference) / float(len(reference))
                total_cer += cer
                total_wer += wer
                del out
            wer = total_wer / len(test_loader.dataset)
            cer = total_cer / len(test_loader.dataset)
            wer *= 100
            cer *= 100
            loss_results[epoch] = avg_loss
            wer_results[epoch] = wer
            cer_results[epoch] = cer
            print('Validation Summary Epoch: [{0}]\t'
                  'Average WER {wer:.3f}\t'
                  'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

            if args.visdom and main_proc:
                x_axis = epochs[0:epoch + 1]
                y_axis = torch.stack(
                    (loss_results[0:epoch + 1], wer_results[0:epoch + 1], cer_results[0:epoch + 1]), dim=1)
                if viz_window is None:
                    viz_window = viz.line(
                        X=x_axis,
                        Y=y_axis,
                        opts=opts,
                    )
                else:
                    viz.line(
                        X=x_axis.unsqueeze(0).expand(y_axis.size(1), x_axis.size(0)).transpose(0, 1),  # Visdom fix
                        Y=y_axis,
                        win=viz_window,
                        update='replace',
                    )
            if args.tensorboard and main_proc:
                values = {
                    'Avg Train Loss': avg_loss,
                    'Avg WER': wer,
                    'Avg CER': cer
                }
                tensorboard_writer.add_scalars(args.id, values, epoch + 1)
                if args.log_params:
                    for tag, value in model.named_parameters():
                        tag = tag.replace('.', '/')
                        tensorboard_writer.add_histogram(tag, to_np(value), epoch + 1)
                        tensorboard_writer.add_histogram(tag + '/grad', to_np(value.grad), epoch + 1)
            if args.checkpoint and main_proc:
                file_path = '%s/deepspeech_%d.pth' % (save_folder, epoch + 1)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results),
                           file_path)
                # anneal lr
                optim_state = optimizer.state_dict()
                optim_state['param_groups'][0]['lr'] = optim_state['param_groups'][0]['lr'] / args.learning_anneal
                optimizer.load_state_dict(optim_state)
                print('Learning rate annealed to: {lr:.6f}'.format(lr=optim_state['param_groups'][0]['lr']))

            if (best_wer is None or best_wer > wer) and main_proc:
                print("Found better validated model, saving to %s" % args.model_path)
                torch.save(DeepSpeech.serialize(model, optimizer=optimizer, epoch=epoch, loss_results=loss_results,
                                                wer_results=wer_results, cer_results=cer_results), args.model_path)
                best_wer = wer

                avg_loss = 0
            if not args.no_shuffle:
                print("Shuffling batches...")
                train_sampler.shuffle(epoch)
Ejemplo n.º 3
0
    def train_batch(self, epoch, batch_id, data):
        inputs, targets, filenames, input_percentages, target_sizes = data
        input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
        # measure data loading time
        data_time.update(time.time() - self.end)

        inputs = inputs.to(device)
        input_sizes = input_sizes.to(device)

        logits, probs, output_sizes = model(inputs, input_sizes)
        assert logits.is_cuda
        assert probs.is_cuda
        assert output_sizes.is_cuda

        split_targets = []
        offset = 0
        for size in target_sizes:
            split_targets.append(targets[offset:offset + size])
            offset += size

        decoded_output, _ = decoder.decode(probs, output_sizes)
        target_strings = decoder.convert_to_strings(split_targets)
        for x in range(len(target_strings)):
            transcript, reference = decoded_output[x][0], target_strings[x][0]
            wer, cer, wer_ref, cer_ref = get_cer_wer(decoder, transcript,
                                                     reference)
            train_dataset.update_curriculum(filenames[x], reference,
                                            transcript, None, cer / cer_ref,
                                            wer / wer_ref)

            self.train_wer += wer
            self.train_cer += cer
            self.num_words += wer_ref
            self.num_chars += cer_ref

        logits = logits.transpose(0, 1)  # TxNxH

        if torch.isnan(logits).any():  # and args.nan == 'zero':
            # work around bad data
            print("WARNING: Working around NaNs in data")
            logits[torch.isnan(logits)] = 0

        loss = criterion(logits, targets, output_sizes.cpu(), target_sizes)
        loss = loss / inputs.size(0)  # average the loss by minibatch
        loss = loss.to(device)

        inf = float("inf")
        if args.distributed:
            loss_value = reduce_tensor(loss, args.world_size).item()
        else:
            loss_value = loss.item()
        if loss_value == inf or loss_value == -inf:
            print("WARNING: received an inf loss, setting loss value to 1000")
            loss_value = 1000

        loss_value = float(loss_value)
        losses.update(loss_value, inputs.size(0))

        # update_curriculum

        # compute gradient
        optimizer.zero_grad()
        loss.backward()

        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)

        if torch.isnan(logits).any():
            # work around bad data
            print("WARNING: Skipping NaNs in backward step")
        else:
            # SGD step
            optimizer.step()
            if args.enorm:
                enorm.step()

        # measure elapsed time
        batch_time.update(time.time() - self.end)
        if not args.silent:
            print('GPU-{0} Epoch {1} [{2}/{3}]\t'
                  'Time {batch_time.val:.2f} ({batch_time.avg:.2f})\t'
                  'Data {data_time.val:.2f} ({data_time.avg:.2f})\t'
                  'Loss {loss.val:.2f} ({loss.avg:.2f})\t'.format(
                      args.gpu_rank or VISIBLE_DEVICES[0],
                      epoch + 1,
                      batch_id + 1,
                      len(train_sampler),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))

        del inputs, targets, input_percentages, input_sizes
        del logits, probs, output_sizes, target_sizes, loss
        return loss_value
Ejemplo n.º 4
0
def check_model_quality(epoch, checkpoint, train_loss, train_cer, train_wer):
    gc.collect()
    torch.cuda.empty_cache()

    val_cer_sum, val_wer_sum, val_loss_sum = 0, 0, 0
    num_chars, num_words, num_losses = 0, 0, 0
    model.eval()
    with torch.no_grad():
        for i, data in tq(enumerate(test_loader), total=len(test_loader)):
            inputs, targets, filenames, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

            # unflatten targets
            split_targets = []
            offset = 0
            for size in target_sizes:
                split_targets.append(targets[offset:offset + size])
                offset += size

            inputs = inputs.to(device)

            logits, probs, output_sizes = model(inputs, input_sizes)

            loss = criterion(logits.transpose(0, 1), targets,
                             output_sizes.cpu(), target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            inf = float("inf")
            if args.distributed:
                loss_value = reduce_tensor(loss, args.world_size).item()
            else:
                loss_value = loss.item()
            if loss_value == inf or loss_value == -inf:
                print(
                    "WARNING: received an inf loss, setting loss value to 1000"
                )
                loss_value = 1000
            loss_value = float(loss_value)
            val_loss_sum = (val_loss_sum * 0.998 + loss_value * 0.002
                            )  # discount earlier losses
            val_loss_sum += loss_value
            num_losses += 1

            decoded_output, _ = decoder.decode(probs, output_sizes)
            target_strings = decoder.convert_to_strings(split_targets)
            for x in range(len(target_strings)):
                transcript, reference = decoded_output[x][0], target_strings[
                    x][0]
                wer, cer, wer_ref, cer_ref = get_cer_wer(
                    decoder, transcript, reference)
                if x < 1:
                    print("CER: {:6.2f}% WER: {:6.2f}% Filename: {}".format(
                        cer / cer_ref * 100, wer / wer_ref * 100,
                        filenames[x]))
                    print('Reference:', reference, '\nTranscript:', transcript)

                val_wer_sum += wer
                val_cer_sum += cer
                num_words += wer_ref
                num_chars += cer_ref

            del inputs, targets, input_percentages, target_sizes
            del logits, probs, output_sizes, input_sizes
            del split_targets, loss

            if args.cuda:
                torch.cuda.synchronize()

        val_wer = 100 * val_wer_sum / num_words
        val_cer = 100 * val_cer_sum / num_chars
        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1,
                                               wer=val_wer,
                                               cer=val_cer))

        val_loss = val_loss_sum / num_losses
        plots.loss_results[epoch] = train_loss
        plots.wer_results[epoch] = train_wer
        plots.cer_results[epoch] = train_cer
        plots.epochs[epoch] = epoch + 1

        checkpoint_plots.loss_results[checkpoint] = val_loss
        checkpoint_plots.wer_results[checkpoint] = val_wer
        checkpoint_plots.cer_results[checkpoint] = val_cer
        checkpoint_plots.epochs[checkpoint] = checkpoint + 1

        plots.plot_progress(epoch, train_loss, train_cer, train_wer)
        checkpoint_plots.plot_progress(checkpoint, val_loss, val_cer, val_wer)

        if args.checkpoint_anneal != 1.0:
            global lr_plots
            lr_plots.loss_results[checkpoint] = val_loss
            lr_plots.epochs[checkpoint] = get_lr()
            zero_loss = lr_plots.loss_results == 0
            lr_plots.loss_results[zero_loss] = val_loss
            lr_plots.epochs[zero_loss] = get_lr()
            lr_plots.plot_progress(checkpoint, val_loss, val_cer, val_wer)
    return val_wer, val_cer
Ejemplo n.º 5
0
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)

            if args.cuda:
                inputs = inputs.cuda()

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            loss = criterion(out, targets, output_sizes, target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch

            inf = float("inf")
            if args.distributed:
                loss_value = reduce_tensor(loss, args.world_size)[0]
            else:
                loss_value = loss.item()
            if loss_value == inf or loss_value == -inf:
                print("WARNING: received an inf loss, setting loss value to 0")
                loss_value = 0

            avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # compute gradient
            optimizer.zero_grad()
            loss.backward()

            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
            # SGD step
Ejemplo n.º 6
0
def calculate_trainval_quality_metrics(checkpoint,
                                       epoch,
                                       loader,
                                       plots_handle):
    val_cer_sum, val_wer_sum, val_loss_sum = 0, 0, 0
    num_chars, num_words, num_losses = 0, 0, 0
    model.eval()    
    with torch.no_grad():
        for i, data in enumerate(loader):#tq(enumerate(loader), total=len(loader)):
            inputs, targets, filenames, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

            # unflatten targets
            split_targets = []
            offset = 0
            for size in target_sizes:
                split_targets.append(targets[offset:offset + size])
                offset += size

            inputs = inputs.to(device)

            logits, probs, output_sizes = model(inputs, input_sizes)

            loss = criterion(logits.transpose(0, 1), targets, output_sizes.cpu(), target_sizes)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            inf = float("inf")
            if args.distributed:
                loss_value = reduce_tensor(loss, args.world_size).item()
            else:
                loss_value = loss.item()
            if loss_value == inf or loss_value == -inf:
                print("WARNING: received an inf loss, setting loss value to 1000")
                loss_value = 1000
            loss_value = float(loss_value)
            val_loss_sum = (val_loss_sum * 0.998 + loss_value * 0.002)  # discount earlier losses
            val_loss_sum += loss_value
            num_losses += 1

            decoded_output, _ = decoder.decode(probs, output_sizes)
            target_strings = decoder.convert_to_strings(split_targets)
            for x in range(len(target_strings)):
                transcript, reference = decoded_output[x][0], target_strings[x][0]
                wer, cer, wer_ref, cer_ref = get_cer_wer(decoder, transcript, reference)
                if x < 1:
                    print("CER: {:6.2f}% WER: {:6.2f}% Filename: {}".format(cer/cer_ref*100, wer/wer_ref*100, filenames[x]))
                    print('Reference:', reference, '\nTranscript:', transcript)
                    
                times_used = trainval_dataset.curriculum[filenames[x]]['times_used']+1
                trainval_dataset.update_curriculum(filenames[x],
                                                   reference, transcript,
                                                   None,
                                                   cer / cer_ref, wer / wer_ref,
                                                   times_used=times_used)
                
                val_wer_sum += wer
                val_cer_sum += cer
                num_words += wer_ref
                num_chars += cer_ref

            del inputs, targets, input_percentages, target_sizes
            del logits, probs, output_sizes, input_sizes
            del split_targets, loss

            if args.cuda:
                torch.cuda.synchronize()

        val_wer = 100 * val_wer_sum / num_words
        val_cer = 100 * val_cer_sum / num_chars
        print('TrainVal Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=val_wer, cer=val_cer))

        val_loss = val_loss_sum / num_losses

        plots_handle.loss_results[checkpoint] = val_loss
        plots_handle.wer_results[checkpoint] = val_wer
        plots_handle.cer_results[checkpoint] = val_cer
        plots_handle.epochs[checkpoint] = checkpoint + 1 
        plots_handle.plot_progress(checkpoint, val_loss, val_cer, val_wer)