def build_validation_data_loader(self) -> DataLoader: if not self.data_downloaded: data.download_data(self.download_directory) self.data_downloaded = True corpus = data_util.Corpus(self.download_directory) test_dataset = data.PTBData( corpus.valid, self.context.get_hparam("seq_len"), self.context.get_hparam("eval_batch_size"), self.context.get_hparam("bptt"), self.context.get_hparam("max_seq_length_delta"), ) return DataLoader( test_dataset, batch_sampler=data.BatchSamp( test_dataset, self.context.get_hparam("bptt"), self.context.get_hparam("max_seq_length_delta"), valid=True, ), collate_fn=data.PadSequence(), )
def build_training_data_loader(self) -> DataLoader: train_dataset = data.PTBData( self.corpus.train, self.context.get_per_slot_batch_size(), self.hparams.bptt, self.hparams.max_seq_length_delta, ) return DataLoader( train_dataset, batch_sampler=data.BatchSamp( train_dataset, self.hparams.bptt, self.hparams.max_seq_length_delta, ), collate_fn=data.PadSequence(), )
def build_validation_data_loader(self) -> DataLoader: test_dataset = data.PTBData( self.corpus.valid, self.hparams.eval_batch_size, self.hparams.bptt, self.hparams.max_seq_length_delta, ) return DataLoader( test_dataset, batch_sampler=data.BatchSamp( test_dataset, self.hparams.bptt, self.hparams.max_seq_length_delta, valid=True, ), collate_fn=data.PadSequence(), )
def build_training_data_loader(self) -> DataLoader: if not self.data_downloaded: data.download_data(self.download_directory) self.data_downloaded = True corpus = data_util.Corpus(self.download_directory) train_dataset = data.PTBData( corpus.train, self.context.get_hparam("seq_len"), self.context.get_per_slot_batch_size(), self.context.get_hparam("bptt"), self.context.get_hparam("max_seq_length_delta"), ) return DataLoader( train_dataset, batch_sampler=data.BatchSamp( train_dataset, self.context.get_hparam("bptt"), self.context.get_hparam("max_seq_length_delta"), ), collate_fn=data.PadSequence(), )