Ejemplo n.º 1
0
def PPMIFT(cluster_names_fn,
           ranking_fn,
           file_name,
           do_p=False,
           data_type="movies",
           rewrite_files=False,
           limit_entities=False,
           classification="genres",
           lowest_amt=0,
           highest_amt=2147000000):
    pavPPMI_fn = "../data/" + data_type + "/finetune/" + file_name + ".txt"
    all_fns = [pavPPMI_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", pavPPMI.__name__)
        return
    else:
        print("Running task", pavPPMI.__name__)
    print("certainly still running that old pavPPMI task, yes sir")
    if limit_entities is False:
        classification = "all"

    ranking = dt.import2dArray(ranking_fn)
    names = dt.import1dArray(cluster_names_fn)
    frq = []
    counter = 0

    for name in names:
        name = name.split()[0]
        if ":" in name:
            name = name[:-1]
        frq.append(
            readPPMI(name, data_type, lowest_amt, highest_amt, classification))

    dt.write2dArray(frq, pavPPMI_fn)
    return frq
Ejemplo n.º 2
0
def LDA(tf, names, components, file_name, doc_topic_prior, topic_word_prior,
        data_type, rewrite_files):
    # Removed model name as it was unused and I manually renamed a bunch of files and was too lazy to do model too
    rep_name = "../data/" + data_type + "/LDA/rep/" + file_name + ".txt"
    model_name = "../data/" + data_type + "/LDA/model/" + file_name + ".txt"
    names_name = "../data/" + data_type + "/LDA/names/" + file_name + ".txt"

    all_names = [rep_name, names_name]

    if dt.allFnsAlreadyExist(all_names) and not rewrite_files:
        print("Already completed")
        return
    print(len(tf), print(len(tf[0])))

    print("Fitting LDA models with tf features,")
    lda = LatentDirichletAllocation(doc_topic_prior=doc_topic_prior,
                                    topic_word_prior=topic_word_prior,
                                    n_topics=components)
    t0 = time()
    tf = np.asarray(tf).transpose()
    new_rep = lda.fit_transform(tf)
    print("done in %0.3fs." % (time() - t0))

    print("\nTopics in LDA model:")
    topics = print_top_words(lda, names)
    topics.reverse()
    dt.write1dArray(
        topics, "../data/" + data_type + "/LDA/names/" + file_name + ".txt")
    dt.write2dArray(new_rep.transpose(), rep_name)
    joblib.dump(lda, model_name)
def main(data_type, clf, min, max, depth, rewrite_files):
    dm_fn = "../data/" + data_type + "/mds/class-all-" + str(min) + "-" + str(max) \
                    + "-" + clf  + "dm"
    dm_shorten_fn = "../data/" + data_type + "/mds/class-all-" + str(min) + "-" + str(max) \
                    + "-" + clf  + "dmround"
    mds_fn = "../data/"+data_type+"/mds/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf+ "d" + str(depth)
    svd_fn = "../data/"+data_type+"/svd/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf + "d" + str(depth)
    pca_fn = "../data/"+data_type+"/pca/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf + "d" + str(depth)
    shorten_fn = "../data/" + data_type + "/bow/ppmi/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf+ "round"

    term_frequency_fn = init_vector_path = "../data/" + data_type + "/bow/ppmi/simple_numeric_stopwords_ppmi 2-all.npz"
    if dt.allFnsAlreadyExist([dm_fn, mds_fn, svd_fn, shorten_fn]):
        print("all files exist")
        exit()

    #Get MDS
    """
    tf = dt.import2dArray(term_frequency_fn).transpose()
    pca = sparseSVD(tf, depth)
    dt.write2dArray(pca, pca_fn)
    """

    # REMINDER: np.dot is WAY faster!
    tf = dt.import2dArray(term_frequency_fn, return_sparse=True)

    dm = getDsimMatrixDense(tf)
    dt.write2dArray(dm, dm_fn)
    print("wrote dm")
    """ Pretty sure none of this works
Ejemplo n.º 4
0
def logisticRegression(cluster_names_fn,
                       ranking_fn,
                       file_name,
                       do_p=False,
                       data_type="movies",
                       rewrite_files=False,
                       limit_entities=False,
                       classification="genres",
                       lowest_amt=0,
                       highest_amt=2147000000,
                       sparse_freqs_fn=None,
                       bow_names_fn=None):
    lr_fn = "../data/" + data_type + "/finetune/boc/" + file_name + ".txt"
    all_fns = [lr_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", bagOfClusters.__name__)
        return
    else:
        print("Running task", bagOfClusters.__name__)

    if limit_entities is False:
        classification = "all"

    cluster_names = dt.import2dArray(cluster_names_fn, "s")
    bow_names = dt.import1dArray(bow_names_fn, "s")
    sparse_freqs = dt.import2dArray(sparse_freqs_fn, return_sparse=True)

    frq = getLROnBag(cluster_names, data_type, lowest_amt, highest_amt,
                     classification, file_name, bow_names, sparse_freqs)

    dt.write2dArray(frq, lr_fn)
    return frq
Ejemplo n.º 5
0
def bagOfClusters(cluster_names_fn,
                  ranking_fn,
                  file_name,
                  do_p=False,
                  data_type="movies",
                  rewrite_files=False,
                  limit_entities=False,
                  classification="genres",
                  lowest_amt=0,
                  highest_amt=2147000000):
    pavPPMI_fn = "../data/" + data_type + "/finetune/boc/" + file_name + ".txt"
    all_fns = [pavPPMI_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", bagOfClusters.__name__)
        return
    else:
        print("Running task", bagOfClusters.__name__)

    if limit_entities is False:
        classification = "all"

    ranking = dt.import2dArray(ranking_fn)
    names = dt.import2dArray(cluster_names_fn, "s")

    frq = writeBagOfClusters(names, data_type, lowest_amt, highest_amt,
                             classification)

    dt.write2dArray(frq, pavPPMI_fn)
    return frq
Ejemplo n.º 6
0
def pavPPMI(cluster_names_fn,
            ranking_fn,
            file_name,
            do_p=False,
            data_type="movies",
            rewrite_files=False,
            limit_entities=False,
            classification="genres",
            lowest_amt=0,
            highest_amt=2147000000):
    pavPPMI_fn = "../data/" + data_type + "/finetune/" + file_name + ".txt"
    all_fns = [pavPPMI_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", pavPPMI.__name__)
        return
    else:
        print("Running task", pavPPMI.__name__)
    print("certainly still running that old pavPPMI task, yes sir")
    if limit_entities is False:
        classification = "all"

    ranking = dt.import2dArray(ranking_fn)
    names = dt.import1dArray(cluster_names_fn)
    frq = []
    counter = 0

    for name in names:
        name = name.split()[0]
        if ":" in name:
            name = name[:-1]
        frq.append(
            readPPMI(name, data_type, lowest_amt, highest_amt, classification))

    pav_classes = []

    for f in range(len(frq)):
        try:
            print(names[f])
            x = np.asarray(frq[f])
            y = ranking[f]

            ir = IsotonicRegression()
            y_ = ir.fit_transform(x, y)
            pav_classes.append(y_)
            if do_p:
                plot(x, y, y_)
        except ValueError:
            print(names[f], "len ppmi",
                  len(frq[f], "len ranking", len(ranking[f])))
            exit()
        print(f)

    dt.write2dArray(pav_classes, pavPPMI_fn)
    return pav_classes
def saveClusters(directions_fn,
                 scores_fn,
                 names_fn,
                 filename,
                 amt_of_dirs,
                 data_type,
                 cluster_amt,
                 rewrite_files=False,
                 algorithm="meanshift_k"):

    dict_fn = "../data/" + data_type + "/cluster/dict/" + filename + ".txt"
    cluster_directions_fn = "../data/" + data_type + "/cluster/clusters/" + filename + ".txt"

    all_fns = [dict_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", saveClusters.__name__)
        return
    else:
        print("Running task", saveClusters.__name__)

    p_dir = dt.import2dArray(directions_fn)
    p_names = dt.import1dArray(names_fn, "s")
    p_scores = dt.import1dArray(scores_fn, "f")

    ids = np.argsort(p_scores)

    p_dir = np.flipud(p_dir[ids])[:amt_of_dirs]
    p_names = np.flipud(p_names[ids])[:amt_of_dirs]
    if algorithm == "meanshift":
        labels = meanShift(p_dir)
    else:
        labels = kMeans(p_dir, cluster_amt)
    unique, counts = np.unique(labels, return_counts=True)

    clusters = []
    dir_clusters = []
    for i in range(len(unique)):
        clusters.append([])
        dir_clusters.append([])
    for i in range(len(labels)):
        clusters[labels[i]].append(p_names[i])
        dir_clusters[labels[i]].append(p_dir[i])
    cluster_directions = []
    for l in range(len(dir_clusters)):
        cluster_directions.append(dt.mean_of_array(dir_clusters[l]))

    print("------------------------")
    for c in clusters:
        print(c)
    print("------------------------")

    dt.write2dArray(clusters, dict_fn)
    dt.write2dArray(cluster_directions, cluster_directions_fn)
Ejemplo n.º 8
0
def getNDCG(rankings_fn,
            fn,
            data_type,
            bow_fn,
            ppmi_fn,
            lowest_count,
            rewrite_files=False,
            highest_count=0,
            classification=""):

    # Check if the NDCG scores have already been calculated, if they have then skip.
    ndcg_fn = "../data/" + data_type + "/ndcg/" + fn + ".txt"

    all_fns = [ndcg_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", getNDCG.__name__)
        return
    else:
        print("Running task", getNDCG.__name__)

    # Get the file names for the PPMI values for every word and a list of words ("names")
    names = dt.import1dArray("../data/" + data_type + "/bow/names/" + bow_fn)
    ppmi = dt.import2dArray("../data/" + data_type + "/bow/ppmi/" + ppmi_fn)
    # Process the rankings and the PPMI line-by-line so as to not run out of memory
    ndcg_a = []
    #spearman_a = []
    with open(rankings_fn) as rankings:
        r = 0
        for lr in rankings:
            for lp in ppmi:
                # Get the plain-number ranking of the rankings, e.g. "1, 4, 3, 50"
                sorted_indices = np.argsort(
                    list(map(float,
                             lr.strip().split())))[::-1]
                # Convert PPMI scores to floats
                # Get the NDCG score for the PPMI score, which is a valuation, compared to the indice of the rank
                ndcg = ndcg_from_ranking(lp, sorted_indices)

                # Add to array and print
                ndcg_a.append(ndcg)
                print("ndcg", ndcg, names[r], r)
                """
                    smr = spearmanr(ppmi_indices, sorted_indices)[1]
                    spearman_a.append(smr)
                    print("spearman", smr, names[r], r)
                    """
                r += 1
                break
    # Save NDCG
    dt.write1dArray(ndcg_a, ndcg_fn)
Ejemplo n.º 9
0
def avgPPMI(cluster_names_fn,
            ranking_fn,
            file_name,
            do_p=False,
            data_type="movies",
            rewrite_files=False,
            classification="genres",
            lowest_amt=0,
            highest_amt=2147000000,
            limit_entities=False,
            save_results_so_far=False):
    pavPPMI_fn = "../data/" + data_type + "/finetune/" + file_name + ".txt"
    all_fns = [pavPPMI_fn]
    if dt.allFnsAlreadyExist(
            all_fns) and not rewrite_files or save_results_so_far:
        print("Skipping task", avgPPMI.__name__)
        return
    else:
        print("Running task", avgPPMI.__name__)

    if limit_entities is False:
        classification = "all"

    ranking = dt.import2dArray(ranking_fn)
    names = dt.import2dArray(cluster_names_fn, "s")

    for n in range(len(names)):
        for x in range(len(names[n])):
            if ":" in names[n][x]:
                names[n][x] = names[n][x][:-1]

    frq = []
    counter = 0

    for n in range(len(names)):
        name_frq = []
        for name in names[n]:
            name_frq.append(
                readPPMI(name, data_type, lowest_amt, highest_amt,
                         classification))
        avg_frq = []
        name_frq = np.asarray(name_frq).transpose()
        for name in name_frq:
            avg_frq.append(np.average(name))
        frq.append(np.asarray(avg_frq))
        print(n)

    dt.write2dArray(frq, pavPPMI_fn)
    return frq
Ejemplo n.º 10
0
def bagOfClustersPavPPMI(cluster_names_fn,
                         ranking_fn,
                         file_name,
                         do_p=False,
                         data_type="movies",
                         rewrite_files=False,
                         limit_entities=False,
                         classification="genres",
                         lowest_amt=0,
                         highest_amt=2147000000,
                         sparse_freqs_fn=None,
                         bow_names_fn=None):

    pavPPMI_fn = "../data/" + data_type + "/finetune/boc/" + file_name + ".txt"
    all_fns = [pavPPMI_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", bagOfClustersPavPPMI.__name__)
        return
    else:
        print("Running task", bagOfClustersPavPPMI.__name__)

    if limit_entities is False:
        classification = "all"

    bow_names = dt.import1dArray(bow_names_fn, "s")
    sparse_freqs = dt.import2dArray(sparse_freqs_fn, return_sparse=True)
    ranking = dt.import2dArray(ranking_fn)
    cluster_names = dt.import2dArray(cluster_names_fn, "s")

    frq = getLROnBag(cluster_names, data_type, lowest_amt, highest_amt,
                     classification, file_name, bow_names, sparse_freqs)

    pav_classes = []

    for f in range(len(frq)):
        print(cluster_names[f])
        x = np.asarray(frq[f])
        y = ranking[f]

        ir = IsotonicRegression()
        y_ = ir.fit_transform(x, y)
        pav_classes.append(y_)
        if do_p:
            plot(x, y, y_)
        print(f)

    dt.write2dArray(pav_classes, pavPPMI_fn)
    return pav_classes
Ejemplo n.º 11
0
def main(data_type, clf, highest_amt, lowest_amt, depth, rewrite_files):

    min = lowest_amt
    max = highest_amt
    dm_fn = "../data/" + data_type + "/mds/class-all-" + str(min) + "-" + str(max) \
                    + "-" + clf  + "dm"
    dm_shorten_fn = "../data/" + data_type + "/mds/class-all-" + str(min) + "-" + str(max) \
                    + "-" + clf  + "dmround"
    mds_fn = "../data/"+data_type+"/mds/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf+ "d" + str(depth)
    svd_fn = "../data/"+data_type+"/svd/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf + "d" + str(depth)
    pca_fn = "../data/"+data_type+"/pca/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf + "d" + str(depth)
    shorten_fn = "../data/" + data_type + "/bow/ppmi/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf+ "round"

    term_frequency_fn = init_vector_path = "../data/" + data_type + "/bow/ppmi/class-all-" + str(min) + "-" + str(max) \
                                           + "-" + clf
    if dt.allFnsAlreadyExist([dm_fn, mds_fn, svd_fn, shorten_fn]):
        print("all files exist")
        exit()
    if dt.fileExists(dm_fn) is False:
        newsgroups_train = fetch_20newsgroups(subset='train', shuffle=False)
        newsgroups_test = fetch_20newsgroups(subset='test', shuffle=False)


        vectors = np.concatenate((newsgroups_train.data, newsgroups_test.data), axis=0)
        newsgroups_test = None
        newsgroups_train = None
        # Get sparse tf rep
        tf_vectorizer = CountVectorizer(max_df=highest_amt, min_df=lowest_amt, stop_words='english')
        print("completed vectorizer")
        tf = tf_vectorizer.fit_transform(vectors)
        vectors = None
        # Get sparse PPMI rep from sparse tf rep
        print("done ppmisaprse")
        sparse_ppmi = convertPPMISparse(tf)
        # Get sparse Dsim matrix from sparse PPMI rep
        dm = getDissimilarityMatrixSparse(sparse_ppmi)
        dt.write2dArray(dm, dm_fn)
    else:
        dm = dt.import2dArray(dm_fn)
    print("starting mds")
    # Use as input to mds
    mds = createMDS(dm, depth)
    # save MDS
    dt.write2dArray(mds, mds_fn)
Ejemplo n.º 12
0
def getAllRankings(directions_fn,
                   vectors_fn,
                   cluster_names_fn,
                   vector_names_fn,
                   percent,
                   percentage_increment,
                   by_vector,
                   fn,
                   discrete=True,
                   data_type="movies",
                   rewrite_files=False):

    #labels_fn = "../data/"+data_type+"/rank/labels/" + fn + ".txt"
    rankings_fn = "../data/" + data_type + "/rank/numeric/" + fn + ".txt"
    #discrete_labels_fn = "../data/"+data_type+"/rank/discrete/" + fn + ".txt"

    all_fns = [rankings_fn]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        for f in all_fns:
            print(f, "Already exists")
        print("Skipping task", "getAllRankings")
        return
    else:
        print("Running task", "getAllRankings")

    directions = dt.import2dArray(directions_fn)
    vectors = dt.import2dArray(vectors_fn)
    cluster_names = dt.import1dArray(cluster_names_fn)
    vector_names = dt.import1dArray(vector_names_fn)
    rankings = getRankings(directions, vectors, cluster_names, vector_names)
    rankings = np.asarray(rankings)
    if discrete:
        labels = createLabels(rankings, percent)
        labels = np.asarray(labels)
        discrete_labels = createDiscreteLabels(rankings, percentage_increment)
        discrete_labels = np.asarray(discrete_labels)
    if by_vector:
        labels = labels.transpose()
        if discrete:
            discrete_labels = discrete_labels.transpose()
        rankings = rankings.transpose()
    if discrete:
        dt.write2dArray(labels, labels_fn)

    dt.write2dArray(rankings, rankings_fn)
    if discrete:
        dt.write2dArray(discrete_labels, discrete_labels_fn)
Ejemplo n.º 13
0
def getAllPhraseRankings(directions_fn=None,
                         vectors_fn=None,
                         property_names_fn=None,
                         vector_names_fn=None,
                         fn="no filename",
                         percentage_increment=1,
                         scores_fn=None,
                         top_amt=0,
                         discrete=False,
                         data_type="movies",
                         rewrite_files=False):
    rankings_fn_all = "../data/" + data_type + "/rank/numeric/" + fn + "ALL.txt"

    all_fns = [rankings_fn_all]
    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", "getAllPhraseRankings")
        return
    else:
        print("Running task", "getAllPhraseRankings")

    directions = dt.import2dArray(directions_fn)
    vectors = dt.import2dArray(vectors_fn)
    property_names = dt.import1dArray(property_names_fn)
    vector_names = dt.import1dArray(vector_names_fn)
    if top_amt != 0:
        scores = dt.import1dArray(scores_fn, "f")
        directions = dt.sortByReverseArray(directions, scores)[:top_amt]
        property_names = dt.sortByReverseArray(property_names,
                                               scores)[:top_amt]

    rankings = getRankings(directions, vectors, property_names, vector_names)
    if discrete:
        discrete_labels = createDiscreteLabels(rankings, percentage_increment)
        discrete_labels = np.asarray(discrete_labels)
    for a in range(len(rankings)):
        rankings[a] = np.around(rankings[a], decimals=4)
    #dt.write1dArray(property_names, "../data/movies/bow/names/top5kof17k.txt")

    dt.write2dArray(rankings, rankings_fn_all)
Ejemplo n.º 14
0
    def __init__(self,
                 vector_path,
                 class_path,
                 property_names_fn,
                 file_name,
                 svm_type,
                 training_size=10000,
                 lowest_count=200,
                 highest_count=21470000,
                 get_kappa=True,
                 get_f1=True,
                 single_class=True,
                 data_type="movies",
                 getting_directions=True,
                 threads=1,
                 chunk_amt=0,
                 chunk_id=0,
                 rewrite_files=False,
                 classification="all",
                 loc="../data/"):

        self.get_kappa = True
        self.get_f1 = get_f1
        self.data_type = data_type
        self.classification = classification
        self.lowest_amt = lowest_count
        self.higher_amt = highest_count

        if chunk_amt > 0:
            file_name = file_name + " CID" + str(chunk_id) + " CAMT" + str(
                chunk_amt)

        directions_fn = loc + data_type + "/svm/directions/" + file_name + ".txt"
        ktau_scores_fn = loc + data_type + "/svm/f1/" + file_name + ".txt"
        kappa_fn = loc + data_type + "/svm/kappa/" + file_name + ".txt"
        acc_fn = loc + data_type + "/svm/acc/" + file_name + ".txt"

        all_fns = [directions_fn, kappa_fn]
        if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
            print("Skipping task", "getSVMResults")
            return
        else:
            print("Running task", "getSVMResults")

        y_train = 0
        y_test = 0
        vectors = np.asarray(dt.import2dArray(vector_path))
        print("imported vectors")
        if not getting_directions:
            classes = np.asarray(dt.import2dArray(class_path))
            print("imported classes")
        property_names = dt.import1dArray(property_names_fn)
        print("imported propery names")
        if chunk_amt > 0:
            if chunk_id == chunk_amt - 1:
                chunk = int(len(property_names) / chunk_amt)
                multiply = chunk_amt - 1
                property_names = property_names[chunk * multiply:]
            else:
                property_names = dt.chunks(
                    property_names, int(
                        (len(property_names) / chunk_amt)))[chunk_id]

        if not getting_directions:
            x_train, x_test, y_train, y_test = train_test_split(vectors,
                                                                classes,
                                                                test_size=0.3,
                                                                random_state=0)
        else:
            x_train = vectors
            x_test = vectors

        if get_f1:
            y_train = y_train.transpose()
            y_test = y_test.transpose()
            print("transpoosed")
        self.x_train = x_train
        self.x_test = x_test
        self.y_train = y_train
        self.y_test = y_test

        if self.get_f1 is False:
            print("running svms")
            kappa_scores, directions, ktau_scores, property_names = self.runAllSVMs(
                y_test, y_train, property_names, file_name, svm_type,
                getting_directions, threads)

            dt.write1dArray(kappa_scores, kappa_fn)
            dt.write2dArray(directions, directions_fn)
            dt.write1dArray(ktau_scores, ktau_scores_fn)
            dt.write1dArray(property_names,
                            property_names_fn + file_name + ".txt")
        else:
            final_f1 = []
            final_acc = []
            for y in range(len(y_train)):
                f1, acc = self.runClassifySVM(y_test[y], y_train[y])
                print(f1, acc)
                final_f1.append(f1)
                final_acc.append(acc)
            dt.write1dArray(final_f1, ktau_scores_fn)
            dt.write1dArray(final_acc, acc_fn)
Ejemplo n.º 15
0
    def __init__(self,
                 features_fn,
                 classes_fn,
                 class_names_fn,
                 cluster_names_fn,
                 filename,
                 max_depth=None,
                 balance=None,
                 criterion="entropy",
                 save_details=False,
                 data_type="movies",
                 cv_splits=5,
                 csv_fn="../data/temp/no_csv_provided.csv",
                 rewrite_files=True,
                 split_to_use=-1,
                 development=False,
                 limit_entities=False,
                 limited_label_fn=None,
                 vector_names_fn=None,
                 pruning=1,
                 save_results_so_far=False):

        vectors = np.asarray(dt.import2dArray(features_fn)).transpose()

        labels = np.asarray(dt.import2dArray(classes_fn, "i"))

        print("vectors", len(vectors), len(vectors[0]))
        print("labels", len(labels), len(labels[0]))
        print("vectors", len(vectors), len(vectors[0]))
        cluster_names = dt.import1dArray(cluster_names_fn)
        label_names = dt.import1dArray(class_names_fn)
        all_fns = []
        file_names = ['ACC J48' + filename, 'F1 J48' + filename]
        acc_fn = '../data/' + data_type + '/rules/tree_scores/' + file_names[
            0] + '.scores'
        f1_fn = '../data/' + data_type + '/rules/tree_scores/' + file_names[
            1] + '.scores'
        all_fns.append(acc_fn)
        all_fns.append(f1_fn)
        all_fns.append(csv_fn)

        print(dt.allFnsAlreadyExist(all_fns), rewrite_files)

        if dt.allFnsAlreadyExist(
                all_fns) and not rewrite_files or save_results_so_far:
            print("Skipping task", "Weka Tree")
            return
        else:
            print("Running task", "Weka Tree")

        for l in range(len(cluster_names)):
            cluster_names[l] = cluster_names[l].split()[0]
        """
        for l in range(len(label_names)):
            if label_names[l][:6] == "class-":
                label_names[l] = label_names[l][6:]
        """
        f1_array = []
        accuracy_array = []

        labels = labels.transpose()
        print("labels transposed")
        print("labels", len(labels), len(labels[0]))

        if limit_entities is False:
            vector_names = dt.import1dArray(vector_names_fn)
            limited_labels = dt.import1dArray(limited_label_fn)
            vectors = np.asarray(
                dt.match_entities(vectors, limited_labels, vector_names))

        all_y_test = []
        all_predictions = []
        for l in range(len(labels)):

            if balance:
                new_vectors, new_labels = dt.balanceClasses(vectors, labels[l])
            else:
                new_vectors = vectors
                new_labels = labels[l]
            # Select training data with cross validation

            ac_y_test = []
            ac_y_train = []
            ac_x_train = []
            ac_x_test = []
            ac_y_dev = []
            ac_x_dev = []
            cv_f1 = []
            cv_acc = []
            if cv_splits == 1:
                kf = KFold(n_splits=3, shuffle=False, random_state=None)
            else:
                kf = KFold(n_splits=cv_splits,
                           shuffle=False,
                           random_state=None)
            c = 0
            for train, test in kf.split(new_vectors):
                if split_to_use > -1:
                    if c != split_to_use:
                        c += 1
                        continue
                ac_y_test.append(new_labels[test])
                ac_y_train.append(new_labels[train[int(len(train) * 0.2):]])
                val = int(len(train) * 0.2)
                t_val = train[val:]
                nv_t_val = new_vectors[t_val]
                ac_x_train.append(nv_t_val)
                ac_x_test.append(new_vectors[test])
                ac_x_dev.append(new_vectors[train[:int(len(train) * 0.2)]])
                ac_y_dev.append(new_labels[train[:int(len(train) * 0.2)]])
                c += 1
                if cv_splits == 1:
                    break

            predictions = []
            rules = []

            if development:
                ac_x_test = np.copy(np.asarray(ac_x_dev))
                ac_y_test = np.copy(np.asarray(ac_y_dev))

            train_fn = "../data/" + data_type + "/weka/data/" + filename + "Train.txt"
            test_fn = "../data/" + data_type + "/weka/data/" + filename + "Test.txt"

            for splits in range(len(ac_y_test)):

                # Get the weka predictions
                dt.writeArff(ac_x_train[splits], [ac_y_train[splits]],
                             [label_names[splits]],
                             train_fn,
                             header=True)
                dt.writeArff(ac_x_test[splits], [ac_y_test[splits]],
                             [label_names[splits]],
                             test_fn,
                             header=True)
                prediction, rule = self.getWekaPredictions(
                    train_fn + label_names[splits] + ".arff",
                    test_fn + label_names[splits] + ".arff", save_details,
                    pruning)
                predictions.append(prediction)
                rules.append(rule)

            for i in range(len(predictions)):
                if len(predictions) == 1:
                    all_y_test.append(ac_y_test[i])
                    all_predictions.append(predictions[i])
                f1 = f1_score(ac_y_test[i], predictions[i], average="binary")
                accuracy = accuracy_score(ac_y_test[i], predictions[i])
                cv_f1.append(f1)
                cv_acc.append(accuracy)
                scores = [[label_names[l], "f1", f1, "accuracy", accuracy]]
                print(scores)

                # Export a tree for each label predicted by the clf, not sure if this is needed...
                if save_details:
                    data_fn = "../data/" + data_type + "/rules/weka_rules/" + label_names[
                        l] + " " + filename + ".txt"
                    class_names = [label_names[l], "NOT " + label_names[l]]
                    #self.get_code(clf, cluster_names, class_names, label_names[l] + " " + filename, data_type)
                    dt.write1dArray(rules[i].split("\n"), data_fn)
                    dot_file = dt.import1dArray(data_fn)
                    new_dot_file = []
                    for line in dot_file:
                        if "->" not in line and "label" in line and '"t ' not in line and '"f ' not in line:
                            line = line.split('"')
                            line[1] = '"' + cluster_names[int(line[1])] + '"'
                            line = "".join(line)
                        new_dot_file.append(line)
                    dt.write1dArray(new_dot_file, data_fn)
                    graph = pydot.graph_from_dot_file(data_fn)
                    graph.write_png("../data/" + data_type +
                                    "/rules/weka_images/" + label_names[l] +
                                    " " + filename + ".png")
            f1_array.append(np.average(np.asarray(cv_f1)))
            accuracy_array.append(np.average(np.asarray(cv_acc)))

        accuracy_array = np.asarray(accuracy_array)
        accuracy_average = np.average(accuracy_array)
        accuracy_array = accuracy_array.tolist()
        f1_array = np.asarray(f1_array)
        f1_average = np.average(f1_array)
        f1_array = f1_array.tolist()
        micro_average = f1_score(np.asarray(all_y_test),
                                 np.asarray(all_predictions),
                                 average="micro")

        print("Micro F1", micro_average)

        accuracy_array.append(accuracy_average)
        accuracy_array.append(0.0)

        f1_array.append(f1_average)
        f1_array.append(micro_average)

        scores = [accuracy_array, f1_array]

        dt.write1dArray(accuracy_array, acc_fn)
        dt.write1dArray(f1_array, f1_fn)

        print(csv_fn)
        if dt.fileExists(csv_fn):
            print("File exists, writing to csv")
            try:
                dt.write_to_csv(csv_fn, file_names, scores)
            except PermissionError:
                print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                dt.write_to_csv(
                    csv_fn[:len(csv_fn) - 4] + str(random.random()) +
                    "FAIL.csv", file_names, scores)
        else:
            print("File does not exist, recreating csv")
            key = []
            for l in label_names:
                key.append(l)
            key.append("AVERAGE")
            key.append("MICRO AVERAGE")
            dt.write_csv(csv_fn, file_names, scores, key)
Ejemplo n.º 16
0
    def __init__(self,
                 vector_path,
                 class_path,
                 property_names_fn,
                 file_name,
                 svm_type,
                 training_size=10000,
                 lowest_count=200,
                 highest_count=21470000,
                 get_kappa=True,
                 get_f1=True,
                 single_class=True,
                 data_type="movies",
                 getting_directions=True,
                 threads=1,
                 chunk_amt=0,
                 chunk_id=0,
                 rewrite_files=False,
                 classification="all",
                 loc="../data/",
                 logistic_regression=False,
                 sparse_array_fn=None,
                 only_these_fn=None):

        self.get_kappa = True
        self.get_f1 = get_f1
        self.data_type = data_type
        self.classification = classification
        self.lowest_amt = lowest_count
        self.higher_amt = highest_count

        if chunk_amt > 0:
            file_name = file_name + " CID" + str(chunk_id) + " CAMT" + str(
                chunk_amt)

        directions_fn = loc + data_type + "/svm/directions/" + file_name + ".txt"
        ktau_scores_fn = loc + data_type + "/svm/f1/" + file_name + ".txt"
        kappa_fn = loc + data_type + "/svm/kappa/" + file_name + ".txt"
        acc_fn = loc + data_type + "/svm/acc/" + file_name + ".txt"
        TP_fn = loc + data_type + "/svm/stats/TP " + file_name + ".txt"
        FP_fn = loc + data_type + "/svm/stats/FP " + file_name + ".txt"
        TN_fn = loc + data_type + "/svm/stats/TN " + file_name + ".txt"
        FN_fn = loc + data_type + "/svm/stats/FN " + file_name + ".txt"

        all_fns = [directions_fn, kappa_fn]
        if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
            print("Skipping task", "getSVMResults")
            return
        else:
            print("Running task", "getSVMResults")

        y_train = 0
        y_test = 0
        vectors = np.asarray(dt.import2dArray(vector_path))
        print("imported vectors")
        if not getting_directions:
            classes = np.asarray(dt.import2dArray(class_path))
            print("imported classes")

        property_names = dt.import1dArray(property_names_fn)
        print("imported propery names")
        if chunk_amt > 0:
            if chunk_id == chunk_amt - 1:
                chunk = int(len(property_names) / chunk_amt)
                multiply = chunk_amt - 1
                property_names = property_names[chunk * multiply:]
            else:
                property_names = dt.chunks(
                    property_names, int(
                        (len(property_names) / chunk_amt)))[chunk_id]

        if sparse_array_fn is not None:
            sparse_array = dt.import2dArray(sparse_array_fn)
        else:
            sparse_array = None

        if sparse_array is not None:
            for s in range(len(sparse_array)):
                if len(np.nonzero(sparse_array[s])[0]) <= 1:
                    print("WILL FAIL", s, len(np.nonzero(sparse_array[s])[0]))
                else:
                    print(len(np.nonzero(sparse_array[s])[0]))

        if not getting_directions:
            x_train, x_test, y_train, y_test = train_test_split(vectors,
                                                                classes,
                                                                test_size=0.3,
                                                                random_state=0)
        else:
            x_train = vectors
            x_test = vectors

        if get_f1:
            y_train = y_train.transpose()
            y_test = y_test.transpose()
            print("transpoosed")
        self.x_train = x_train
        self.x_test = x_test
        self.y_train = y_train
        self.y_test = y_test

        if only_these_fn is not None:
            only_these = dt.import1dArray(only_these_fn, "s")
            inds = []
            for s in range(len(property_names)):
                for o in only_these:
                    if property_names[s] == o:
                        inds.append(s)
                        break
            sparse_array = sparse_array[inds]
            property_names = property_names[inds]

        if self.get_f1 is False:
            print("running svms")
            kappa_scores, directions, f1_scores, property_names, accs, TPs, FPs, TNs, FNs = self.runAllSVMs(
                y_test, y_train, property_names, file_name, svm_type,
                getting_directions, threads, logistic_regression, sparse_array)

            dt.write1dArray(kappa_scores, kappa_fn)
            dt.write2dArray(directions, directions_fn)
            dt.write1dArray(f1_scores, ktau_scores_fn)
            dt.write1dArray(accs, acc_fn)
            dt.write1dArray(TPs, TP_fn)
            dt.write1dArray(FPs, FP_fn)
            dt.write1dArray(TNs, TN_fn)
            dt.write1dArray(FNs, FN_fn)
            dt.write1dArray(property_names,
                            property_names_fn + file_name + ".txt")
        else:
            final_f1 = []
            final_acc = []
            for y in range(len(y_train)):
                f1, acc = self.runClassifySVM(y_test[y], y_train[y])
                print(f1, acc)
                final_f1.append(f1)
                final_acc.append(acc)
            dt.write1dArray(final_f1, ktau_scores_fn)
            dt.write1dArray(final_acc, acc_fn)
Ejemplo n.º 17
0
    def __init__(self,
                 class_path=None,
                 get_scores=False,
                 randomize_finetune_weights=False,
                 dropout_noise=None,
                 amount_of_hidden=0,
                 epochs=1,
                 learn_rate=0.01,
                 loss="mse",
                 batch_size=1,
                 past_model_bias_fn=None,
                 identity_swap=False,
                 reg=0.0,
                 amount_of_finetune=[],
                 output_size=25,
                 hidden_activation="tanh",
                 layer_init="glorot_uniform",
                 output_activation="tanh",
                 deep_size=None,
                 corrupt_finetune_weights=False,
                 split_to_use=-1,
                 hidden_layer_size=100,
                 file_name="unspecified_filename",
                 vector_path=None,
                 is_identity=False,
                 finetune_size=0,
                 data_type="movies",
                 optimizer_name="rmsprop",
                 noise=0.0,
                 fine_tune_weights_fn=None,
                 past_model_weights_fn=None,
                 from_ae=True,
                 save_outputs=False,
                 label_names_fn="",
                 rewrite_files=False,
                 cv_splits=1,
                 cutoff_start=0.2,
                 development=False,
                 class_weight=None,
                 csv_fn=None,
                 tune_vals=False,
                 get_nnet_vectors_path=None,
                 classification_name="all",
                 limit_entities=False,
                 limited_label_fn="",
                 vector_names_fn="",
                 identity_activation="linear",
                 loc="../data/",
                 lock_weights_and_redo=False):

        total_file_name = loc + data_type + "/nnet/spaces/" + file_name
        weights_fn = loc + data_type + "/nnet/weights/" + file_name + "L0.txt"
        bias_fn = loc + data_type + "/nnet/bias/" + file_name + "L0.txt"
        rank_fn = loc + data_type + "/nnet/clusters/" + file_name + ".txt"

        all_fns = [weights_fn, bias_fn, rank_fn]
        if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
            print("Skipping task", "nnet")
            return
        else:

            print("Running task", "nnet")

        self.class_path = class_path
        self.learn_rate = learn_rate
        self.epochs = epochs
        self.loss = loss
        self.batch_size = batch_size
        self.hidden_activation = hidden_activation
        self.layer_init = layer_init
        self.output_activation = output_activation
        self.hidden_layer_size = hidden_layer_size
        self.file_name = file_name
        self.vector_path = vector_path
        self.dropout_noise = dropout_noise
        self.finetune_size = finetune_size
        self.get_scores = get_scores
        self.reg = reg
        self.amount_of_finetune = amount_of_finetune
        self.amount_of_hidden = amount_of_hidden
        self.output_size = output_size
        self.identity_swap = identity_swap
        self.deep_size = deep_size
        self.from_ae = from_ae
        self.is_identity = is_identity
        self.randomize_finetune_weights = randomize_finetune_weights
        self.corrupt_finetune_weights = corrupt_finetune_weights
        self.deep_size = deep_size
        self.fine_tune_weights_fn = fine_tune_weights_fn
        self.identity_activation = identity_activation
        self.lock_weights_and_redo = lock_weights_and_redo

        print(data_type)

        if optimizer_name == "adagrad":
            self.optimizer = Adagrad()
        elif optimizer_name == "sgd":
            self.optimizer = SGD()
        elif optimizer_name == "rmsprop":
            self.optimizer = RMSprop()
        elif optimizer_name == "adam":
            self.optimizer = Adam()
        elif optimizer_name == "adadelta":
            self.optimizer = Adadelta()
        else:
            print("optimizer not found")
            exit()

        entity_vectors = np.asarray(dt.import2dArray(self.vector_path))
        print("Imported vectors", len(entity_vectors), len(entity_vectors[0]))

        if get_nnet_vectors_path is not None:
            nnet_vectors = np.asarray(dt.import2dArray(get_nnet_vectors_path))
            print("Imported vectors", len(entity_vectors),
                  len(entity_vectors[0]))

        entity_classes = np.asarray(dt.import2dArray(self.class_path))
        print("Imported classes", len(entity_classes), len(entity_classes[0]))

        if fine_tune_weights_fn is None:
            vector_names = dt.import1dArray(vector_names_fn)
            limited_labels = dt.import1dArray(limited_label_fn)
            entity_vectors = np.asarray(
                dt.match_entities(entity_vectors, limited_labels,
                                  vector_names))

        if fine_tune_weights_fn is not None:
            if len(entity_vectors) != len(entity_classes):
                entity_classes = entity_classes.transpose()
                print("Transposed classes, now in form", len(entity_classes),
                      len(entity_classes[0]))
                """
                # IF Bow
                if len(entity_vectors[0]) != len(entity_classes[0]):
                    entity_vectors = entity_vectors.transpose()
                    print("Transposed vectors, now in form", len(entity_vectors), len(entity_vectors[0]))
                """
        elif len(entity_vectors) != len(entity_classes):
            entity_vectors = entity_vectors.transpose()
            print("Transposed vectors, now in form", len(entity_vectors),
                  len(entity_vectors[0]))

        self.input_size = len(entity_vectors[0])
        self.output_size = len(entity_classes[0])

        if fine_tune_weights_fn is not None:
            model_builder = self.fineTuneNetwork
            weights = []
            if from_ae:
                self.past_weights = []
                past_model_weights = []
                for p in past_model_weights_fn:
                    past_model_weights.append(
                        np.asarray(dt.import2dArray(p), dtype="float64"))
                past_model_bias = []
                for p in past_model_bias_fn:
                    past_model_bias.append(
                        np.asarray(dt.import1dArray(p, "f"), dtype="float64"))

                for p in range(len(past_model_weights)):
                    past_model_weights[p] = np.around(past_model_weights[p],
                                                      decimals=6)
                    past_model_bias[p] = np.around(past_model_bias[p],
                                                   decimals=6)

                for p in range(len(past_model_weights)):
                    self.past_weights.append([])
                    self.past_weights[p].append(past_model_weights[p])
                    self.past_weights[p].append(past_model_bias[p])
            for f in fine_tune_weights_fn:
                weights.extend(dt.import2dArray(f))

            r = np.asarray(weights, dtype="float64")
            r = np.asarray(weights, dtype="float64")

            for a in range(len(r)):
                r[a] = np.around(r[a], decimals=6)

            for a in range(len(entity_classes)):
                entity_classes[a] = np.around(entity_classes[a], decimals=6)

            self.fine_tune_weights = []
            self.fine_tune_weights.append(r.transpose())
            self.fine_tune_weights.append(
                np.zeros(shape=len(r), dtype="float64"))
        else:
            model_builder = self.classifierNetwork

        models = []
        x_train = []
        y_train = []
        x_test = []
        y_test = []
        x_dev = []
        y_dev = []
        train_x_c = []
        train_y_c = []

        c = 0
        for i in range(cv_splits):
            if split_to_use > -1:
                if c != split_to_use:
                    c += 1
                    continue

            models.append(model_builder())
            c += 1

        # Converting labels to categorical

        f1_scores = []
        accuracy_scores = []
        f1_averages = []
        accuracy_averages = []
        if cv_splits == 1:
            k_fold = KFold(n_splits=3, shuffle=False, random_state=None)
        else:
            k_fold = KFold(n_splits=cv_splits,
                           shuffle=False,
                           random_state=None)
        c = 0
        for train, test in k_fold.split(entity_vectors):
            if split_to_use > -1:
                if c != split_to_use:
                    c += 1
                    continue
            x_train.append(entity_vectors[train[:int(len(train) * 0.8)]])
            y_train.append(entity_classes[train[:int(len(train) * 0.8)]])
            x_test.append(entity_vectors[test])
            y_test.append(entity_classes[test])
            x_dev.append(entity_vectors[train[int(len(train) *
                                                  0.8):len(train)]])
            y_dev.append(entity_classes[train[int(len(train) *
                                                  0.8):len(train)]])

            train_x_c, train_y_c = entity_vectors[
                train[:int(len(train) *
                           0.8)]], entity_classes[train[:int(len(train) *
                                                             0.8)]]

            if fine_tune_weights_fn is not None:
                train_x_c = entity_vectors
                train_y_c = entity_classes
            hist = models[0].fit(train_x_c,
                                 train_y_c,
                                 nb_epoch=self.epochs,
                                 batch_size=self.batch_size,
                                 verbose=1,
                                 class_weight=class_weight)
            print(hist.history)
            c += 1
            if cv_splits == 1 or split_to_use == c:
                break
        if lock_weights_and_redo:
            print("REDO WITH LOCKED WEIGHTS")

            unlocked_model = Sequential()
            for l in range(0, len(models[0].layers) - 1):
                unlocked_model.add(models[0].layers[l])

            self.end_space = unlocked_model.predict(entity_vectors)
            total_file_name = loc + data_type + "/nnet/spaces/" + file_name
            dt.write2dArray(self.end_space,
                            total_file_name + "L" + str(l) + "LSPACE" + ".txt")
            unlocked_model.add(
                Dense(output_dim=finetune_size,
                      input_dim=self.hidden_layer_size,
                      activation="linear",
                      weights=self.fine_tune_weights))  #
            unlocked_model.compile(loss=self.loss, optimizer=self.optimizer)

            models[0] = unlocked_model
            hist = models[0].fit(train_x_c,
                                 train_y_c,
                                 nb_epoch=self.epochs,
                                 batch_size=self.batch_size,
                                 verbose=1,
                                 class_weight=class_weight)

        original_fn = file_name
        for m in range(len(models)):
            if development:
                x_test[m] = x_dev[m]
                y_test[m] = y_dev[m]

            if get_scores:

                vals_to_try = np.arange(start=cutoff_start, stop=1, step=0.01)
                test_pred = models[m].predict(x_train[m]).transpose()
                print(test_pred)
                y_train_m = np.asarray(y_train[m]).transpose()
                highest_f1 = [0] * len(test_pred)
                highest_vals = [0.2] * len(test_pred)

                if tune_vals:
                    for c in range(len(test_pred)):
                        for val in vals_to_try:
                            test_pred_c = np.copy(test_pred[c])
                            test_pred_c[test_pred_c >= val] = 1
                            test_pred_c[test_pred_c < val] = 0
                            acc = accuracy_score(y_train_m[c], test_pred_c)
                            f1 = f1_score(y_train_m[c],
                                          test_pred_c,
                                          average="binary")
                            f1 = (f1 + acc) / 2
                            if f1 > highest_f1[c]:
                                highest_f1[c] = f1
                                highest_vals[c] = val
                print("optimal f1s", highest_f1)
                print("optimal vals", highest_vals)
                y_pred = models[m].predict(x_test[m]).transpose()
                y_test[m] = np.asarray(y_test[m]).transpose()
                for y in range(len(y_pred)):
                    y_pred[y][y_pred[y] >= highest_vals[y]] = 1
                    y_pred[y][y_pred[y] < highest_vals[y]] = 0
                f1_array = []
                accuracy_array = []
                for y in range(len(y_pred)):
                    accuracy_array.append(
                        accuracy_score(y_test[m][y], y_pred[y]))
                    f1_array.append(
                        f1_score(y_test[m][y], y_pred[y], average="binary"))
                    print(f1_array[y])
                y_pred = y_pred.transpose()
                y_test[m] = np.asarray(y_test[m]).transpose()
                micro_average = f1_score(y_test[m], y_pred, average="micro")
                cv_f1_fn = loc + data_type + "/nnet/scores/F1 " + file_name + ".txt"
                cv_acc_fn = loc + data_type + "/nnet/scores/ACC " + file_name + ".txt"
                dt.write1dArray(f1_array, cv_f1_fn)
                dt.write1dArray(accuracy_array, cv_acc_fn)
                f1_scores.append(f1_array)
                accuracy_scores.append(accuracy_array)
                f1_average = np.average(f1_array)
                accuracy_average = np.average(accuracy_array)
                f1_averages.append(f1_average)
                accuracy_averages.append(accuracy_average)
                print("Average F1 Binary", f1_average, "Acc", accuracy_average)
                print("Micro Average F1", micro_average)

                f1_array.append(f1_average)
                f1_array.append(micro_average)
                accuracy_array.append(accuracy_average)
                accuracy_array.append(0.0)

                scores = [accuracy_array, f1_array]

                csv_fn = loc + data_type + "/nnet/csv/" + csv_fn + ".csv"

                file_names = [file_name + "ACC", file_name + "F1"]
                label_names = dt.import1dArray(label_names_fn)
                if dt.fileExists(csv_fn):
                    print("File exists, writing to csv")
                    try:
                        dt.write_to_csv(csv_fn, file_names, scores)
                    except PermissionError:
                        print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE")
                        dt.write_to_csv(
                            csv_fn[:len(csv_fn) - 4] + str(random.random()) +
                            "FAIL.csv", [file_name], scores)
                else:
                    print("File does not exist, recreating csv")
                    key = []
                    for l in label_names:
                        key.append(l)
                    key.append("AVERAGE")
                    key.append("MICRO AVERAGE")
                    dt.write_csv(csv_fn, file_names, scores, key)

            if save_outputs:
                if limit_entities is False:
                    self.output_clusters = models[m].predict(nnet_vectors)
                else:
                    self.output_clusters = models[m].predict(entity_vectors)
                self.output_clusters = self.output_clusters.transpose()
                dt.write2dArray(self.output_clusters, rank_fn)

            for l in range(0, len(models[m].layers) - 1):
                if dropout_noise is not None and dropout_noise > 0.0:
                    if l % 2 == 1:
                        continue
                print("Writing", l, "layer")
                truncated_model = Sequential()
                for a in range(l + 1):
                    truncated_model.add(models[m].layers[a])
                truncated_model.compile(loss=self.loss, optimizer="sgd")
                if get_nnet_vectors_path is not None:
                    self.end_space = truncated_model.predict(nnet_vectors)
                else:
                    self.end_space = truncated_model.predict(entity_vectors)
                total_file_name = loc + data_type + "/nnet/spaces/" + file_name
                dt.write2dArray(self.end_space,
                                total_file_name + "L" + str(l) + ".txt")

            for l in range(len(models[m].layers)):
                try:
                    dt.write2dArray(
                        models[m].layers[l].get_weights()[0], loc + data_type +
                        "/nnet/weights/" + file_name + "L" + str(l) + ".txt")
                    dt.write1dArray(
                        models[m].layers[l].get_weights()[1], loc + data_type +
                        "/nnet/bias/" + file_name + "L" + str(l) + ".txt")
                except IndexError:
                    print("Layer ", str(l), "Failed")

        if cv_splits > 1:
            class_f1_averages = []
            class_accuracy_averages = []
            f1_scores = np.asarray(f1_scores).transpose()
            accuracy_scores = np.asarray(accuracy_scores).transpose()

            for c in range(len(f1_scores)):
                class_f1_averages.append(np.average(f1_scores[c]))
                class_accuracy_averages.append(np.average(accuracy_scores[c]))

            f1_fn = loc + data_type + "/nnet/scores/F1 " + file_name + ".txt"
            acc_fn = loc + data_type + "/nnet/scores/ACC " + file_name + ".txt"
            dt.write1dArray(class_f1_averages, f1_fn)
            dt.write1dArray(class_accuracy_averages, acc_fn)
            overall_f1_average = np.average(f1_averages)
            overall_accuracy_average = np.average(accuracy_averages)
Ejemplo n.º 18
0
def initClustering(vector_fn, directions_fn, scores_fn, names_fn, amt_to_start, profiling,
                   max_clusters, score_limit, file_name, score_type, similarity_threshold, add_all_terms=False,
                   data_type="movies", largest_clusters=1,
                 rewrite_files=False, lowest_amt=0, highest_amt=0, classification="genres", min_score=0, min_size = 1,
                   dissim=0.0, dissim_amt=0, find_most_similar=False, get_all=False, half_ndcg_half_kappa = "",
                   only_most_similar=False, dont_cluster=0):

    output_directions_fn =  "../data/" + data_type + "/cluster/hierarchy_directions/"+file_name+".txt"
    output_names_fn = "../data/" + data_type + "/cluster/hierarchy_names/" + file_name +".txt"
    all_directions_fn = "../data/" + data_type + "/cluster/all_directions/" + file_name + ".txt"
    all_names_fn = "../data/" + data_type + "/cluster/all_names/" + file_name + ".txt"
    all_fns = [output_directions_fn, output_names_fn, all_directions_fn, all_names_fn]


    if dt.allFnsAlreadyExist(all_fns) and not rewrite_files:
        print("Skipping task", getBreakOffClusters.__name__)
        return
    else:
        print("Running task", getBreakOffClusters.__name__)

    vectors = dt.import2dArray(vector_fn)
    directions = dt.import2dArray(directions_fn)
    scores = dt.import1dArray(scores_fn, "f")
    names = dt.import1dArray(names_fn)
    type1 = np.ones(int(len(names)/2))
    type2 = np.zeros(int(len(names)/2))
    shuffle_ind = np.asarray(list(range(0, len(type1))))
    type = np.insert(type1, shuffle_ind, type2) # Kappa = 0, NDCG = 1

    if len(half_ndcg_half_kappa) > 0:
        kappa_scores = dt.import1dArray(half_ndcg_half_kappa, "f")

    if amt_to_start > 0:
        if len(half_ndcg_half_kappa) == 0:
            ind = np.flipud(np.argsort(scores))[:amt_to_start] #Top X scoring
        else:
            ind1 = np.flipud(np.argsort(scores))[:amt_to_start/2]
            ind2 = np.zeros(len(ind1), dtype="int")
            kappa_scores = np.flipud(np.argsort(kappa_scores))
            count = 0
            added = 0
            for i in kappa_scores:
                if i not in ind1:
                    ind2[added] = i
                    added += 1
                if added >= amt_to_start/2:
                    break
                count += 1
            shuffle_ind = np.asarray(list(range(0, len(ind1))))
            ind = np.insert(ind1, shuffle_ind, ind2)
    else:
        ind = np.flipud(np.argsort(scores))
        ind = [i for i in ind if scores[i] > min_score]

    top_directions = []
    top_scores = []
    top_names = []

    for i in ind:
        top_directions.append(directions[i])
        top_names.append(names[i])
        top_scores.append(scores[i])

    if profiling:
        cProfile.runctx('getBreakOffClusters(vectors, top_directions, top_scores, top_names, score_limit, \
          max_clusters, file_name, kappa, similarity_threshold, add_all_terms, data_type, \
                            largest_clusters, rewrite_files=rewrite_files, lowest_amt=lowest_amt, highest_amt=highest_amt, \
                            classification=classification, min_size = min_size, dissim=dissim, dissim_amt=dissim_amt, \
                            find_most_similar=find_most_similar, get_all=get_all, half_ndcg_half_kappa=type)', globals(), locals())
    else:

        getBreakOffClusters(vectors, top_directions, top_scores, top_names, score_limit,
                                max_clusters, file_name, score_type, similarity_threshold, add_all_terms, data_type,
                            largest_clusters, rewrite_files=rewrite_files, lowest_amt=lowest_amt, highest_amt=highest_amt,
                            classification=classification, min_size = min_size, dissim=dissim, dissim_amt=dissim_amt,
                            find_most_similar=find_most_similar, get_all=get_all, half_ndcg_half_kappa=type,
                            only_most_similar=only_most_similar, dont_cluster=dont_cluster)