def main(configfile, folddir, resultsdir, outputfile): with open(configfile, 'r') as f: configuration = yaml.load(f) # Generate tasks from experiment list tasks = {} for experiment in configuration['experiments']: classifier = experiment['classifier'] dataset = experiment['dataset'] folds = data.get_folds(folddir, dataset) for f in range(len(folds)): for r in range(experiment['reps']): key = (classifier, dataset, experiment['kernel'], f, r) task = Task(*key) tasks[key] = task # Mark finished tasks for task in tasks.values(): predfile = os.path.join(resultsdir, task.filebase('preds')) task.predfile = predfile if os.path.exists(predfile): task.finish() reindexed = defaultdict(lambda: defaultdict(list)) for (c, d, k, f, r), task in tasks.items(): reindexed[(c, d, k)][r].append(task) existing_keys = set() if os.path.exists(outputfile): with open(outputfile, 'r') as f: for line in f: c, d, k = line.strip().split(',')[:3] existing_keys.add((c, d, k)) with open(outputfile, 'a+') as f: rep_aucs = defaultdict(list) for key, reps in sorted(reindexed.items()): if key in existing_keys: print 'Skipping %s (already finished)...' % str(key) continue data_dict = data.get_dataset(key[1]) bag_ids = sorted(data_dict.keys()) y_true = [data_dict[bid][1] for bid in bag_ids] predictions = [] for rep, task_list in sorted(reps.items()): if all(task.finished for task in task_list): predictions.append(get_preds(key, task_list, bag_ids)) else: break if len(predictions) != len(reps): print 'Skipping %s (incomplete)...' % str(key) continue predictions = np.vstack(predictions) # We want a cumulative average, but doesn't matter for AUC cumpreds = np.cumsum(predictions, axis=0) aucs = [auc_score(y_true, cp) for cp in cumpreds] line = ','.join(map(str, key) + map(str, aucs)) print line f.write(line + '\n')
def main(configfile, folddir, resultsdir): with open(configfile, 'r') as f: configuration = yaml.load(f) # Generate tasks from experiment list tasks = {} for experiment in configuration['experiments']: classifier = experiment['classifier'] dataset = experiment['dataset'] folds = get_folds(folddir, dataset) for f in range(len(folds)): for r in range(experiment['reps'] + 1): key = (classifier, dataset, experiment['kernel'], f, r) kwargs = {} kwargs['params'] = experiment['params'] task = Task(*key, **kwargs) tasks[key] = task # Mark finished tasks for task in tasks.values(): predfile = os.path.join(resultsdir, task.filebase('preds')) if os.path.exists(predfile): task.finish() def handle(key, task, submission): if 'stats' in submission: sfile = os.path.join(resultsdir, task.filebase('stats')) with open(sfile, 'w+') as f: f.write( yaml.dump(submission['stats'], default_flow_style=False)) pfile = os.path.join(resultsdir, task.filebase('preds')) with open(pfile, 'w+') as f: f.write(yaml.dump(submission['preds'], default_flow_style=False)) server = ExperimentServer(tasks, render, handle) cherrypy.config.update({ 'server.socket_port': PORT, 'server.socket_host': '0.0.0.0' }) cherrypy.quickstart(server)
def main(dataset, folddir, outputdir, reps=0): data_dict = data.get_dataset(dataset) folds = data.get_folds(folddir, dataset) all_bag_ids = set(data_dict.keys()) progress = ProgressMonitor(total=reps * len(folds), msg='Generating Replicates') for f in range(len(folds)): test = data.get_fold(folddir, dataset, f) bag_ids = np.array(list(all_bag_ids - set(test))) n = len(bag_ids) for r in range(1, reps + 1): rep_path = os.path.join(outputdir, '%s_%04d_%06d.rep' % (dataset, f, r)) if not os.path.exists(rep_path): sample = np.random.randint(n, size=n) sampled_bags = bag_ids[sample] with open(rep_path, 'w+') as ofile: ofile.write('\n'.join([bid for bid in sampled_bags.flat])) progress.increment()
def main(configfile, folddir, resultsdir): with open(configfile, 'r') as f: configuration = yaml.load(f) # Generate tasks from experiment list total = 0 actual = 0 prog = ProgressMonitor(total=len(configuration['experiments']), msg='Computing noise') for experiment in configuration['experiments']: technique = experiment['technique'] classifier = experiment['classifier'] dataset = experiment['dataset'] ids, _, y = data.get_dataset(dataset) y_dict = {} for (bid, iid), yi in zip(ids, y): y_dict[bid, iid] = yi folds = data.get_folds(folddir, dataset) for f in range(len(folds)): for r in range(experiment['reps']): for i in experiment['initial']: for s in experiment['shuffled']: labeled = setup_rep(technique, experiment['noise'], dataset, f, r, i, s, folddir, resultsdir) pos_shuffled = get_positive_shuffled(labeled, i, s) total += len(pos_shuffled) actual += count_actual_positive(pos_shuffled, y_dict) prog.increment() if total > 0: print 1 - (float(actual) / total) if total > 0: print 1 - (float(actual) / total)
def main(configfile, folddir, resultsdir): with open(configfile, 'r') as f: configuration = yaml.load(f) # Count total experiments for progress monitor exps = 0 for experiment in configuration['experiments']: dataset = experiment['dataset'] folds = get_folds(folddir, dataset) for f in range(len(folds)): for r in range(experiment['reps']): for n in experiment['noise']: for s in experiment['shuffled']: exps += 1 prog = ProgressMonitor(total=exps, msg='Generating Shuffled Bags') # Generate tasks from experiment list tasks = {} for experiment in configuration['experiments']: technique = experiment['technique'] classifier = experiment['classifier'] dataset = experiment['dataset'] folds = get_folds(folddir, dataset) for f in range(len(folds)): for r in range(experiment['reps']): for n in experiment['noise']: for s in experiment['shuffled']: key = (technique, classifier, dataset, experiment['kernel'], f, r, n, s) kwargs = {} kwargs['params'] = experiment['params'] kwargs['shuffled_bags'] = setup_rep(technique, dataset, f, r, n, s, folddir, resultsdir) task = Task(*key, **kwargs) tasks[key] = task prog.increment() # Mark finished tasks for task in tasks.values(): predfile = os.path.join(resultsdir, task.filebase('preds')) if os.path.exists(predfile): task.finish() def handle(key, task, submission): if 'stats' in submission: sfile = os.path.join(resultsdir, task.filebase('stats')) with open(sfile, 'w+') as f: f.write(yaml.dump(submission['stats'], default_flow_style=False)) pfile = os.path.join(resultsdir, task.filebase('preds')) with open(pfile, 'w+') as f: f.write(yaml.dump(submission['preds'], default_flow_style=False)) server = ExperimentServer(tasks, render, handle) cherrypy.config.update({'server.socket_port': PORT, 'server.socket_host': '0.0.0.0'}) cherrypy.quickstart(server)
def main(configfile, folddir, resultsdir, outputfile): with open(configfile, 'r') as f: configuration = yaml.load(f) # Generate tasks from experiment list tasks = {} for experiment in configuration['experiments']: technique = experiment['technique'] classifier = experiment['classifier'] dataset = experiment['dataset'] folds = data.get_folds(folddir, dataset) for f in range(len(folds)): for r in range(experiment['reps']): for i in experiment['initial']: for s in experiment['shuffled']: key = (technique, classifier, dataset, experiment['kernel'], f, r, i, s, experiment['queries']) task = Task(*key) tasks[key] = task # Mark finished tasks for task in tasks.values(): predfile = os.path.join(resultsdir, task.filebase('preds')) task.predfile = predfile if os.path.exists(predfile): task.finish() reindexed = defaultdict(lambda: defaultdict(list)) for (t, c, d, k, f, r, i, s, q), task in tasks.items(): reindexed[(t, c, d, k, i, s, q)][r].append(task) existing_keys = set() if os.path.exists(outputfile): with open(outputfile, 'r') as f: for line in f: t, c, d, k, i, s, q = line.strip().split(',')[:7] existing_keys.add((t, c, d, k, int(i), int(s), int(q))) with open(outputfile, 'a+') as f: rep_aucs = defaultdict(list) for key, reps in sorted(reindexed.items()): if key in existing_keys: print 'Skipping %s (already finished)...' % str(key) continue ids, _, y = data.get_dataset(key[2]) y_dict = defaultdict(bool) for (bid, iid), yi in zip(ids, y): y_dict[bid] |= bool(yi) aucs = [] for rep, task_list in sorted(reps.items()): if all(task.finished for task in task_list): aucs.append(calc_auc_score(key, task_list, y_dict)) else: break if len(aucs) != len(reps): print 'Skipping %s (incomplete)...' % str(key) continue aucs = np.vstack(aucs) avg_aucs = np.average(aucs, axis=0) line = ','.join(map(str, key) + map(str, avg_aucs.flat)) print line f.write(line + '\n')
def main(args): os.environ['KMP_WARNINGS'] = '0' torch.cuda.manual_seed_all(1) np.random.seed(0) print(args.model_name) print(args.alpha) # filter array num_features = [ args.features * i for i in range(1, args.levels + 2 + args.levels_without_sample) ] # 確定 輸出大小 target_outputs = int(args.output_size * args.sr) # 訓練才保存模型設定參數 # 設定teacher and student and student_for_backward 超參數 student_KD = Waveunet(args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) KD_optimizer = Adam(params=student_KD.parameters(), lr=args.lr) print(25 * '=' + 'model setting' + 25 * '=') print('student_KD: ', student_KD.shapes) if args.cuda: student_KD = utils.DataParallel(student_KD) print("move student_KD to gpu\n") student_KD.cuda() state = {"step": 0, "worse_epochs": 0, "epochs": 0, "best_pesq": -np.Inf} if args.load_model is not None: print("Continuing full model from checkpoint " + str(args.load_model)) state = utils.load_model(student_KD, KD_optimizer, args.load_model, args.cuda) dataset = get_folds(args.dataset_dir, args.outside_test) log_dir, checkpoint_dir, result_dir = utils.mkdir_and_get_path(args) # print(model) if args.test is False: writer = SummaryWriter(log_dir) # set hypeparameter # printing hypeparameters info print(25 * '=' + 'printing hypeparameters info' + 25 * '=') with open(os.path.join(log_dir, 'config.json'), 'w') as f: json.dump(args.__dict__, f, indent=5) print('saving commandline_args') student_size = sum(p.numel() for p in student_KD.parameters()) print('student_parameter count: ', str(student_size)) if args.teacher_model is not None: teacher_num_features = [ 24 * i for i in range(1, args.levels + 2 + args.levels_without_sample) ] teacher_model = Waveunet( args.channels, teacher_num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) if args.cuda: teacher_model = utils.DataParallel(teacher_model) teacher_model.cuda() # print("move teacher to gpu\n") student_size = sum(p.numel() for p in student_KD.parameters()) teacher_size = sum(p.numel() for p in teacher_model.parameters()) print('student_parameter count: ', str(student_size)) print('teacher_model_parameter count: ', str(teacher_size)) print(f'compression raito :{100*(student_size/teacher_size)}%') if args.teacher_model is not None: print("load teacher model" + str(args.teacher_model)) _ = utils.load_model(teacher_model, None, args.teacher_model, args.cuda) teacher_model.eval() # If not data augmentation, at least crop targets to fit model output shape crop_func = partial(crop, shapes=student_KD.shapes) ### DATASET train_data = SeparationDataset(dataset, "train", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) val_data = SeparationDataset(dataset, "test", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) dataloader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, worker_init_fn=utils.worker_init_fn, pin_memory=True) # Set up the loss function if args.loss == "L1": criterion = nn.L1Loss() elif args.loss == "L2": criterion = nn.MSELoss() else: raise NotImplementedError("Couldn't find this loss!") My_criterion = customLoss() ### TRAINING START print('TRAINING START') batch_num = (len(train_data) // args.batch_size) while state["epochs"] < 100: # if state["epochs"]<10: # args.alpha=1 # else: # args.alpha=0 # print('fix alpha:',args.alpha) memory_alpha = [] print("epoch:" + str(state["epochs"])) student_KD.train() # monitor_value avg_origin_loss = 0 with tqdm(total=len(dataloader)) as pbar: for example_num, (x, targets) in enumerate(dataloader): if args.cuda: x = x.cuda() targets = targets.cuda() if args.teacher_model is not None: # Set LR for this iteration #print('base_model from KD') utils.set_cyclic_lr(KD_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) _, avg_student_KD_loss = utils.compute_loss( student_KD, x, targets, criterion, compute_grad=False) KD_optimizer.zero_grad() KD_outputs, KD_hard_loss, KD_loss, KD_soft_loss = utils.KD_compute_loss( student_KD, teacher_model, x, targets, My_criterion, alpha=args.alpha, compute_grad=True, KD_method=args.KD_method) KD_optimizer.step() # calculate backwarded model MSE avg_origin_loss += avg_student_KD_loss / batch_num # add to tensorboard writer.add_scalar("KD_loss", KD_loss, state["step"]) writer.add_scalar("KD_hard_loss", KD_hard_loss, state["step"]) writer.add_scalar("KD_soft_loss", KD_soft_loss, state["step"]) else: # no KD training utils.set_cyclic_lr(KD_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) KD_optimizer.zero_grad() KD_outputs, KD_hard_loss = utils.compute_loss( student_KD, x, targets, nn.MSELoss(), compute_grad=True) KD_optimizer.step() avg_origin_loss += KD_hard_loss / batch_num writer.add_scalar("student_KD_loss", KD_hard_loss, state["step"]) ### save wav #### if example_num % args.example_freq == 0: input_centre = torch.mean( x[0, :, student_KD.shapes["output_start_frame"]: student_KD.shapes["output_end_frame"]], 0) # Stereo not supported for logs yet writer.add_audio("input:", input_centre, state["step"], sample_rate=args.sr) writer.add_audio("pred:", torch.mean(KD_outputs[0], 0), state["step"], sample_rate=args.sr) writer.add_audio("target", torch.mean(targets[0], 0), state["step"], sample_rate=args.sr) state["step"] += 1 pbar.update(1) # VALIDATE val_loss, val_metrics = validate(args, student_KD, criterion, val_data) print("ori VALIDATION FINISHED: LOSS: " + str(val_loss)) writer.add_scalar("avg_origin_loss", avg_origin_loss, state["epochs"]) writer.add_scalar("val_enhance_pesq", val_metrics[0], state["epochs"]) writer.add_scalar("val_improve_pesq", val_metrics[1], state["epochs"]) writer.add_scalar("val_enhance_stoi", val_metrics[2], state["epochs"]) writer.add_scalar("val_improve_stoi", val_metrics[3], state["epochs"]) writer.add_scalar("val_enhance_SISDR", val_metrics[4], state["epochs"]) writer.add_scalar("val_improve_SISDR", val_metrics[5], state["epochs"]) # writer.add_scalar("val_COPY_pesq",val_metrics_copy[0], state["epochs"]) writer.add_scalar("val_loss", val_loss, state["epochs"]) # Set up training state dict that will also be saved into checkpoints checkpoint_path = os.path.join( checkpoint_dir, "checkpoint_" + str(state["epochs"])) if val_metrics[0] < state["best_pesq"]: state["worse_epochs"] += 1 else: print("MODEL IMPROVED ON VALIDATION SET!") state["worse_epochs"] = 0 state["best_pesq"] = val_metrics[0] state["best_checkpoint"] = checkpoint_path # CHECKPOINT print("Saving model...") utils.save_model(student_KD, KD_optimizer, state, checkpoint_path) print('dump alpha_memory') with open(os.path.join(log_dir, 'alpha_' + str(state["epochs"])), "wb") as fp: #Pickling pickle.dump(memory_alpha, fp) state["epochs"] += 1 writer.close() info = args.model_name path = os.path.join(result_dir, info) else: PATH = args.load_model.split("/") info = PATH[-3] + "_" + PATH[-1] if (args.outside_test == True): info += "_outside_test" print(info) path = os.path.join(result_dir, info) #### TESTING #### # Test loss print("TESTING") # eval metrics _ = utils.load_model(student_KD, KD_optimizer, state["best_checkpoint"], args.cuda) test_metrics = evaluate(args, dataset["test"], student_KD) test_pesq = test_metrics['pesq'] test_stoi = test_metrics['stoi'] test_SISDR = test_metrics['SISDR'] test_noise = test_metrics['noise'] if not os.path.exists(path): os.makedirs(path) utils.save_result(test_pesq, path, "pesq") utils.save_result(test_stoi, path, "stoi") utils.save_result(test_SISDR, path, "SISDR") utils.save_result(test_noise, path, "noise")
def main(args): os.environ['KMP_WARNINGS'] = '0' torch.cuda.manual_seed_all(1) np.random.seed(0) # filter array num_features = [ args.features * i for i in range(1, args.levels + 2 + args.levels_without_sample) ] # 確定 輸出大小 target_outputs = int(args.output_size * args.sr) # 訓練才保存模型設定參數 # 設定teacher and student and student_for_backward 超參數 student_KD = Waveunet(args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) KD_optimizer = Adam(params=student_KD.parameters(), lr=args.lr) print(25 * '=' + 'model setting' + 25 * '=') print('student_KD: ', student_KD.shapes) if args.cuda: student_KD = utils.DataParallel(student_KD) print("move student_KD to gpu\n") student_KD.cuda() state = {"step": 0, "worse_epochs": 0, "epochs": 0, "best_pesq": -np.Inf} if args.load_model is not None: print("Continuing full model from checkpoint " + str(args.load_model)) state = utils.load_model(student_KD, KD_optimizer, args.load_model, args.cuda) dataset = get_folds(args.dataset_dir, args.outside_test) log_dir, checkpoint_dir, result_dir = utils.mkdir_and_get_path(args) # print(model) if args.test is False: writer = SummaryWriter(log_dir) # set hypeparameter # printing hypeparameters info with open(os.path.join(log_dir, 'config.json'), 'w') as f: json.dump(args.__dict__, f, indent=5) print('saving commandline_args') if args.teacher_model is not None: print(25 * '=' + 'printing hypeparameters info' + 25 * '=') print(f'KD_method = {args.KD_method}') teacher_num_features = [ 24 * i for i in range(1, args.levels + 2 + args.levels_without_sample) ] teacher_model = Waveunet( args.channels, teacher_num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) student_copy = Waveunet( args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) copy_optimizer = Adam(params=student_copy.parameters(), lr=args.lr) student_copy2 = Waveunet( args.channels, num_features, args.channels, levels=args.levels, encoder_kernel_size=args.encoder_kernel_size, decoder_kernel_size=args.decoder_kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res) copy2_optimizer = Adam(params=student_copy2.parameters(), lr=args.lr) policy_network = RL(n_inputs=2, kernel_size=6, stride=1, conv_type=args.conv_type, pool_size=4) PG_optimizer = Adam(params=policy_network.parameters(), lr=args.RL_lr) if args.cuda: teacher_model = utils.DataParallel(teacher_model) policy_network = utils.DataParallel(policy_network) student_copy = utils.DataParallel(student_copy) student_copy2 = utils.DataParallel(student_copy2) # print("move teacher to gpu\n") teacher_model.cuda() # print("student_copy to gpu\n") student_copy.cuda() # print("student_copy2 to gpu\n") student_copy2.cuda() # print("move policy_network to gpu\n") policy_network.cuda() student_size = sum(p.numel() for p in student_KD.parameters()) teacher_size = sum(p.numel() for p in teacher_model.parameters()) print('student_parameter count: ', str(student_size)) print('teacher_model_parameter count: ', str(teacher_size)) print('RL_parameter count: ', str(sum(p.numel() for p in policy_network.parameters()))) print(f'compression raito :{100*(student_size/teacher_size)}%') if args.teacher_model is not None: print("load teacher model" + str(args.teacher_model)) _ = utils.load_model(teacher_model, None, args.teacher_model, args.cuda) teacher_model.eval() if args.load_RL_model is not None: print("Continuing full RL_model from checkpoint " + str(args.load_RL_model)) _ = utils.load_model(policy_network, PG_optimizer, args.load_RL_model, args.cuda) # If not data augmentation, at least crop targets to fit model output shape crop_func = partial(crop, shapes=student_KD.shapes) ### DATASET train_data = SeparationDataset(dataset, "train", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) val_data = SeparationDataset(dataset, "test", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) dataloader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, worker_init_fn=utils.worker_init_fn, pin_memory=True) # Set up the loss function if args.loss == "L1": criterion = nn.L1Loss() elif args.loss == "L2": criterion = nn.MSELoss() else: raise NotImplementedError("Couldn't find this loss!") My_criterion = customLoss() ### TRAINING START print('TRAINING START') if state["epochs"] > 0: state["epochs"] = state["epochs"] + 1 batch_num = (len(train_data) // args.batch_size) if args.teacher_model is not None: counting = 0 PG_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR( optimizer=PG_optimizer, gamma=args.decayRate) while counting < state["epochs"]: PG_optimizer.zero_grad() PG_optimizer.step() counting += 1 PG_lr_scheduler.step() # print(f'modify lr RL rate : {counting} , until : {state["epochs"]}') while state["epochs"] < 100: memory_alpha = [] print("epoch:" + str(state["epochs"])) # monitor_value total_avg_reward = 0 total_avg_scalar_reward = 0 avg_origin_loss = 0 all_avg_KD_rate = 0 same = 0 with tqdm(total=len(dataloader)) as pbar: for example_num, (x, targets) in enumerate(dataloader): # if example_num==20: # break student_KD.train() if args.cuda: x = x.cuda() targets = targets.cuda() if args.teacher_model is not None: student_copy.train() student_copy2.train() # Set LR for this iteration temp = {'state_dict': None, 'optim_dict': None} temp['state_dict'] = copy.deepcopy( student_KD.state_dict()) temp['optim_dict'] = copy.deepcopy( KD_optimizer.state_dict()) #print('base_model from KD') student_KD.load_state_dict(temp['state_dict']) KD_optimizer.load_state_dict(temp['optim_dict']) student_copy.load_state_dict(temp['state_dict']) copy_optimizer.load_state_dict(temp['optim_dict']) student_copy2.load_state_dict(temp['state_dict']) copy2_optimizer.load_state_dict(temp['optim_dict']) utils.set_cyclic_lr(KD_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) utils.set_cyclic_lr(copy_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) utils.set_cyclic_lr(copy2_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) # forward student and teacher get output student_KD_output, avg_student_KD_loss = utils.compute_loss( student_KD, x, targets, criterion, compute_grad=False) teacher_output, _ = utils.compute_loss( teacher_model, x, targets, criterion, compute_grad=False) # PG_state diff_from_target = targets.detach( ) - student_KD_output.detach() diff_from_teacher = teacher_output.detach( ) - student_KD_output.detach() PG_state = torch.cat( (diff_from_target, diff_from_teacher), 1) # forward RL get alpha alpha = policy_network(PG_state) nograd_alpha = alpha.detach() avg_KD_rate = torch.mean(nograd_alpha).item() all_avg_KD_rate += avg_KD_rate / batch_num KD_optimizer.zero_grad() KD_outputs, KD_hard_loss, KD_loss, KD_soft_loss = utils.KD_compute_loss( student_KD, teacher_model, x, targets, My_criterion, alpha=nograd_alpha, compute_grad=True, KD_method=args.KD_method) KD_optimizer.step() copy_optimizer.zero_grad() _, _, _, _ = utils.KD_compute_loss( student_copy, teacher_model, x, targets, My_criterion, alpha=1, compute_grad=True, KD_method=args.KD_method) copy_optimizer.step() copy2_optimizer.zero_grad() _, _, _, _ = utils.KD_compute_loss( student_copy2, teacher_model, x, targets, My_criterion, alpha=0, compute_grad=True, KD_method=args.KD_method) copy2_optimizer.step() # calculate backwarded model MSE backward_KD_loss = utils.loss_for_sample( student_KD, x, targets) backward_copy_loss = utils.loss_for_sample( student_copy, x, targets) backward_copy2_loss = utils.loss_for_sample( student_copy2, x, targets) # calculate rewards rewards, same_num, before_decay = utils.get_rewards( backward_KD_loss.detach(), backward_copy_loss.detach(), backward_copy2_loss.detach(), backward_KD_loss.detach(), len(train_data), state["epochs"] + 1) same += same_num rewards = rewards.detach() avg_origin_loss += avg_student_KD_loss / batch_num # avg_reward avg_reward = torch.mean(rewards) avg_scalar_reward = torch.mean(torch.abs(rewards)) total_avg_reward += avg_reward.item() / batch_num total_avg_scalar_reward += avg_scalar_reward.item( ) / batch_num # append to memory_alpha nograd_alpha = nograd_alpha.detach().cpu() memory_alpha.append(nograd_alpha.numpy()) PG_optimizer.zero_grad() _ = utils.RL_compute_loss(alpha, rewards, nn.MSELoss()) PG_optimizer.step() # print info # print(f'avg_KD_rate = {avg_KD_rate} ') # print(f'student_KD_loss = {avg_student_KD_loss}') # print(f'backward_student_copy_loss = {np.mean(backward_copy_loss.detach().cpu().numpy())}') # print(f'backward_student_KD_loss = {np.mean(backward_KD_loss.detach().cpu().numpy())}') # print(f'backward_student_copy2_loss = {np.mean(backward_copy2_loss.detach().cpu().numpy())}') # print(f'avg_reward = {avg_reward}') # print(f'total_avg_reward = {total_avg_reward}') # print(f'same = {same}') # add to tensorboard writer.add_scalar("student_KD_loss", avg_student_KD_loss, state["step"]) writer.add_scalar( "backward_student_KD_loss", np.mean(backward_KD_loss.detach().cpu().numpy()), state["step"]) writer.add_scalar("KD_loss", KD_loss, state["step"]) writer.add_scalar("KD_hard_loss", KD_hard_loss, state["step"]) writer.add_scalar("KD_soft_loss", KD_soft_loss, state["step"]) writer.add_scalar("avg_KD_rate", avg_KD_rate, state["step"]) writer.add_scalar("rewards", avg_reward, state["step"]) writer.add_scalar("scalar_rewards", avg_scalar_reward, state["step"]) writer.add_scalar("before_decay", before_decay, state["step"]) else: # no KD training utils.set_cyclic_lr(KD_optimizer, example_num, len(train_data) // args.batch_size, args.cycles, args.min_lr, args.lr) KD_optimizer.zero_grad() KD_outputs, KD_hard_loss = utils.compute_loss( student_KD, x, targets, nn.MSELoss(), compute_grad=True) KD_optimizer.step() avg_origin_loss += KD_hard_loss / batch_num writer.add_scalar("student_KD_loss", KD_hard_loss, state["step"]) ### save wav #### if example_num % args.example_freq == 0: input_centre = torch.mean( x[0, :, student_KD.shapes["output_start_frame"]: student_KD.shapes["output_end_frame"]], 0) # Stereo not supported for logs yet # target=torch.mean(targets[0], 0).cpu().numpy() # pred=torch.mean(KD_outputs[0], 0).detach().cpu().numpy() # inputs=input_centre.cpu().numpy() writer.add_audio("input:", input_centre, state["step"], sample_rate=args.sr) writer.add_audio("pred:", torch.mean(KD_outputs[0], 0), state["step"], sample_rate=args.sr) writer.add_audio("target", torch.mean(targets[0], 0), state["step"], sample_rate=args.sr) state["step"] += 1 pbar.update(1) # VALIDATE val_loss, val_metrics = validate(args, student_KD, criterion, val_data) print("ori VALIDATION FINISHED: LOSS: " + str(val_loss)) choose_val = val_metrics if args.teacher_model is not None: for i in range(len(nograd_alpha)): writer.add_scalar("KD_rate_" + str(i), nograd_alpha[i], state["epochs"]) print(f'all_avg_KD_rate = {all_avg_KD_rate}') writer.add_scalar("all_avg_KD_rate", all_avg_KD_rate, state["epochs"]) # writer.add_scalar("val_loss_copy", val_loss_copy, state["epochs"]) writer.add_scalar("total_avg_reward", total_avg_reward, state["epochs"]) writer.add_scalar("total_avg_scalar_reward", total_avg_scalar_reward, state["epochs"]) RL_checkpoint_path = os.path.join( checkpoint_dir, "RL_checkpoint_" + str(state["epochs"])) utils.save_model(policy_network, PG_optimizer, state, RL_checkpoint_path) PG_lr_scheduler.step() writer.add_scalar("same", same, state["epochs"]) writer.add_scalar("avg_origin_loss", avg_origin_loss, state["epochs"]) writer.add_scalar("val_enhance_pesq", choose_val[0], state["epochs"]) writer.add_scalar("val_improve_pesq", choose_val[1], state["epochs"]) writer.add_scalar("val_enhance_stoi", choose_val[2], state["epochs"]) writer.add_scalar("val_improve_stoi", choose_val[3], state["epochs"]) writer.add_scalar("val_enhance_SISDR", choose_val[4], state["epochs"]) writer.add_scalar("val_improve_SISDR", choose_val[5], state["epochs"]) # writer.add_scalar("val_COPY_pesq",val_metrics_copy[0], state["epochs"]) writer.add_scalar("val_loss", val_loss, state["epochs"]) # Set up training state dict that will also be saved into checkpoints checkpoint_path = os.path.join( checkpoint_dir, "checkpoint_" + str(state["epochs"])) if choose_val[0] < state["best_pesq"]: state["worse_epochs"] += 1 else: print("MODEL IMPROVED ON VALIDATION SET!") state["worse_epochs"] = 0 state["best_pesq"] = choose_val[0] state["best_checkpoint"] = checkpoint_path # CHECKPOINT print("Saving model...") utils.save_model(student_KD, KD_optimizer, state, checkpoint_path) print('dump alpha_memory') with open(os.path.join(log_dir, 'alpha_' + str(state["epochs"])), "wb") as fp: #Pickling pickle.dump(memory_alpha, fp) state["epochs"] += 1 writer.close() info = args.model_name path = os.path.join(result_dir, info) else: PATH = args.load_model.split("/") info = PATH[-3] + "_" + PATH[-1] if (args.outside_test == True): info += "_outside_test" print(info) path = os.path.join(result_dir, info) # test_data = SeparationDataset(dataset, "test", args.sr, args.channels, student_KD.shapes, False, args.hdf_dir, audio_transform=crop_func) #### TESTING #### # Test loss print("TESTING") # eval metrics #ling_data=get_ling_data_list('/media/hd03/sutsaiwei_data/data/mydata/ling_data') #validate(args, student_KD, criterion, test_data) #test_metrics = ling_evaluate(args, ling_data['noisy'], student_KD) #test_metrics = evaluate_without_noisy(args, dataset["test"], student_KD) test_metrics = evaluate(args, dataset["test"], student_KD) test_pesq = test_metrics['pesq'] test_stoi = test_metrics['stoi'] test_SISDR = test_metrics['SISDR'] test_noise = test_metrics['noise'] if not os.path.exists(path): os.makedirs(path) utils.save_result(test_pesq, path, "pesq") utils.save_result(test_stoi, path, "stoi") utils.save_result(test_SISDR, path, "SISDR") utils.save_result(test_noise, path, "noise")