Ejemplo n.º 1
0
def test():
	np.random.seed(17)
	X = np.load('data/cifar_gist.npy')
	Y = np.load('data/cifar_label.npy')

	traindata = X[:5000]
	trainlabel = Y[:5000]
	basedata = X[:59000]
	baselabel = Y[:59000]
	testdata = X[59000:]
	testlabel = Y[59000:]

	# train model
	dksh = Sparse_DKSH(64, 1000, 10, RBF)
	tic = time.clock()
	dksh.train(traindata, trainlabel)
	toc = time.clock()
	print 'time:', toc-tic

	H_test = dksh.queryhash(testdata)
	H_base = dksh.queryhash(basedata)

	# make labels
	gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

	print 'testing...'

	res = hash_evaluation(H_test, H_base, gnd_truth, 59000)
	print 'MAP:', res['map']
Ejemplo n.º 2
0
def test():
	#np.random.seed(47)
	X = np.load('data/cifar_gist.npy')
	Y = np.load('data/cifar_label.npy')

	traindata = X[:59000]
	trainlabel = Y[:59000]
	basedata = X[:59000]
	baselabel = Y[:59000]
	testdata = X[59000:]
	testlabel = Y[59000:]

	# train model
	sdh = SDH(32, 300, 10, RBF)
	tic = time.clock()
	sdh.train(traindata, trainlabel)
	toc = time.clock()
	print 'time:', toc-tic

	H_test = sdh.queryhash(testdata)
	H_base = sdh.queryhash(basedata)

	idx = np.argsort(sdh.trainlabel).squeeze()
	bb = sdh.B[idx[0:59000:6000]]
	classham = (32-np.dot(bb,bb.T))/2
	print np.sum(classham)
	print classham

	# make labels
	gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

	print 'testing...'

	res = hash_evaluation(H_test, H_base, gnd_truth, 59000)
	print 'MAP:', res['map']
Ejemplo n.º 3
0
def test():
	np.random.seed(47)
	X = np.load('data/cifar_gist.npy')
	Y = np.load('data/cifar_label.npy')

	traindata = X[:5000]
	trainlabel = Y[:5000]
	basedata = X[:59000]
	baselabel = Y[:59000]
	testdata = X[59000:]
	testlabel = Y[59000:]

	# train model
	alg = SHLE(32, 10, lambda : RBFClassifier(X[:300]))
	alg.train(traindata, trainlabel)

	H_test = alg.queryhash(testdata)
	H_base = alg.queryhash(basedata)

	'''
	idx = np.argsort(alg.trainlabel).squeeze()
	bb = alg.H[idx[0:5000:530]]
	classham = (32-np.dot(bb,bb.T))/2
	print np.sum(classham)
	print classham
	'''

	# make labels
	gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

	print 'testing...'

	res = hash_evaluation(H_test, H_base, gnd_truth, 59000)
	print 'MAP:', res['map']
Ejemplo n.º 4
0
def test():
	X = np.load('data/cifar_gist.npy')
	Y = np.load('data/cifar_label.npy')
	idx = np.arange(60000, dtype=np.int32)
	np.random.shuffle(idx)
	X = X[idx]
	Y = Y[idx]
	traindata = X[:5000]
	trainlabel = Y[:5000]
	basedata = X[:59000]
	baselabel = Y[:59000]
	testdata = X[59000:]
	testlabel = Y[59000:]

	# make labels
	gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

	# train model
	ksh = KSH(48, 300, 10, RBF)
	tic = time.clock()
	ksh.train(traindata, trainlabel)
	# ksh = ksh2.KSH(5000, 300, 12, traindata, trainlabel, RBF)
	toc = time.clock()
	print 'time:', toc-tic
	H_base = ksh.basehash(basedata)
	H_test = ksh.queryhash(testdata)

	# evaluate
	res = hash_evaluation(H_test, H_base, gnd_truth, 59000)
	print 'MAP:', res['map']
Ejemplo n.º 5
0
def test(list_algo_name, list_bits, loader):
	seeds = [7, 17]#, 37, 47, 67, 97, 107, 127, 137, 157]
	for algo_name in list_algo_name:
		for nbit in list_bits:
			print '======execute {} at bit {}======'.format(algo_name, nbit)
			print '====total process round: {}====='.format(len(seeds))
			li_results = []
			for sd in seeds:
				print '\nround #{}...'.format(len(li_results)+1)

				traindata, trainlabel, basedata, baselabel, testdata, testlabel = loader.split(sd)

				alg = hash_factory(algo_name, nbit, 21, 300)

				tic = time.clock()
				alg.train(traindata, trainlabel)
				toc = time.clock()
				print 'time:', toc-tic

				H_test = alg.queryhash(testdata)
				H_base = alg.queryhash(basedata)

				# make labels
				#gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)
				gnd_truth = (np.dot(testlabel, baselabel.T) >= 1).astype(np.int8)

				print 'testing...'

				res = hash_evaluation(H_test, H_base, gnd_truth, len(baselabel), len(baselabel), trn_time=toc-tic)

				li_results.append(res)
				eva_checkpoint(algo_name, nbit, li_results)
Ejemplo n.º 6
0
Archivo: dish-k.py Proyecto: MM394/qqqp
def test(n_bit):
    np.random.seed(17)
    X = np.load('cifar10_data/cifar10_gist.npy')
    Y = np.load('cifar10_data/cifar10_label.npy')

    traindata = X[:59000]
    trainlabel = Y[:59000]
    basedata = X[:59000]
    baselabel = Y[:59000]
    testdata = X[59000:]
    testlabel = Y[59000:]

    # train model
    dish = DISH_K(n_bit, 1000, 10, RBF)
    tic = time.time()
    dish.train(traindata, trainlabel)
    toc = time.time()
    print 'time:', toc - tic

    H_test = dish.queryhash(testdata)
    H_base = dish.basehash(basedata)

    # make labels
    gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

    print 'testing...'

    res = hash_evaluation(H_test, H_base, gnd_truth, 59000)
    print 'MAP:', res['map']
Ejemplo n.º 7
0
def test(list_algo_name, list_bits):
	root = '../../ILSVRC2012_caffe/npy_data/'
	baselabel = np.load(root+'trainlabel.npy')
	testlabel = np.load(root+'testlabel.npy')
	testdata = np.load(root+'testdata_fc6_norm.npy')
	basicdata = np.load(root+'traindata_fc6_norm_1.npy')

	seeds = [7]#, 17, 37, 47, 67, 97, 107, 127, 137, 157]
	for algo_name in list_algo_name:
		for nbit in list_bits:
			print '======execute {} at bit {}======'.format(algo_name, nbit)
			print '====total process round: {}====='.format(len(seeds))
			li_results = []
			for sd in seeds:
				print '\nround #{}...'.format(len(li_results)+1)

				# load data
				np.random.seed(sd)
				idx = np.arange(100000, dtype=np.int32)
				np.random.shuffle(idx)

				traindata = basicdata[idx]
				trainlabel = baselabel[idx]

				alg = hash_factory(algo_name, nbit, 1000, 1000)

				tic = time.clock()
				alg.train(traindata, trainlabel)
				toc = time.clock()
				print 'time:', toc-tic

				print 'hash testing data...'
				H_test = alg.queryhash(testdata)
				print 'hash training data...'
				H_base = np.zeros((baselabel.shape[0], H_test.shape[1]), dtype=np.uint8)
				pt = 0
				for i in xrange(13):
					print 'hashing', i, '...'
					X = np.load('traindata_fc6_norm_{}.npy'.format(i+1))
					n = X.shape[0]
					H_base[pt:pt+n] = alg.basehash(X)
					pt += n

				print 'testing...'
				batch_results = []
				for i in xrange(50):
					# make labels
					print 'testing batch', i, '...'
					gnd_truth = np.array([y == baselabel for y in testlabel[i*1000:(i+1)*1000]]).astype(np.int8)
					batch_results.append(hash_evaluation(H_test, H_base, gnd_truth, 0, topN=5000, trn_time=toc-tic))
					eva_checkpoint(algo_name, nbit, batch_results)

				li_results.append(batch_eva_ensem(batch_results))
				eva_checkpoint(algo_name, nbit, li_results)
Ejemplo n.º 8
0
def test_cnn(n_bit):
	np.random.seed(17)
	if use_vgg:
		X = np.load('cifar10_data/cifar10_256_data.npy')
	else:
		X = np.load('cifar10_data/cifar10_data.npy')
	Y = np.load('cifar10_data/cifar10_label.npy')
	
	is_train = np.load('cifar10_data/cifar10_istrain.npy')
	
	train_idx = np.argwhere(is_train==1)[:,0]
	nottrain_idx = np.argwhere(is_train==0)[:,0]
	np.random.shuffle(nottrain_idx)
	test_idx = nottrain_idx[-1000:]
	base_idx = np.setdiff1d(np.arange(60000, dtype=np.int32), test_idx)
	
	traindata = X[train_idx]
	trainlabel = Y[train_idx]
	testdata = X[test_idx]
	testlabel = Y[test_idx]
	
	basedata = X[base_idx]
	baselabel = Y[base_idx]
	
	del X
	
	# train model
	dksh = DISH_D(n_bit, 10)
	tic = time.time()
	dksh.train(traindata, trainlabel)
	toc = time.time()
	print 'time:', toc-tic

	H_test = dksh.queryhash(testdata)
	H_base = dksh.queryhash(basedata)

	# make labels
	gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

	print 'testing...'

	res = hash_evaluation(H_test, H_base, gnd_truth, len(H_base), topN=len(H_base), trn_time=toc-tic)
	print 'MAP:', res['map'], 'Pre2:', res['pre2']
Ejemplo n.º 9
0
	np.random.seed(97)
	X = np.load('data/cifar_gist.npy')
	Y = np.load('data/cifar_label.npy')

	traindata = X[:59000]
	trainlabel = Y[:59000]
	basedata = X[:59000]
	baselabel = Y[:59000]
	testdata = X[59000:]
	testlabel = Y[59000:]

	# train model
	dksh = DGH(48, 300)
	tic = time.clock()
	dksh.train(traindata)
	toc = time.clock()
	print 'time:', toc-tic

	H_test = dksh.queryhash(testdata)
	H_base = dksh.queryhash(basedata)
	
	idx = np.argsort(baselabel)
	print H_base[idx[0:59000:3000]]

	# make labels
	gnd_truth = np.array([y == baselabel for y in testlabel]).astype(np.int8)

	print 'testing...'

	res = hash_evaluation(H_test, H_base, gnd_truth, 59000)
	print 'MAP:', res['map']