def main(argv): train_set, test_set = data.readFile(argv[1]) index, _data = getData(train_set) n_estimators = np.arange(0.1, 0.5, 0.01) for n_estimator in n_estimators: model = training(_data, argv[2], n_estimator) testing(model, test_set)
def refreshLevelData(): objects.lvl_names, objects.times, objects.player_pos, objects.beatTimes = data.readFile('level data.txt') objects.levelButtonList = [] objects.timeList = [] for lvl in range(len(objects.lvl_names)): objects.levelButtonList.append(button.textButton('%s' %objects.lvl_names[lvl], 40, 0, -50)) objects.timeList.append(button.textButton('%s s' %float(objects.times[lvl]), 30, 0, -50)) objects.beatList.append(button.textButton('%s s' %float(objects.beatTimes[lvl]), 30, 0, -50))
def main(argv): training_set, testing_set = data.readFile(argv[1]) training_X, training_y = features_labels(training_set) testing_X, testing_y = features_labels(testing_set) model, error = svm(training_X, training_y, testing_X, testing_y) print(error) print() model, error = gbr(training_X, training_y, testing_X, testing_y) print(error) print() model, error = rfr(training_X, training_y, testing_X, testing_y) print(error) print() model, error = mlr(training_X, training_y, testing_X, testing_y) print(error) print()
def main(): global args, max_length args = parser.parse_args() if args.eval: if not os.path.exists(args.output_dir): print("Output directory do not exists") exit(0) try: model = EncoderDecoder().load(args.output_dir) print("Model loaded successfully") except: print("The trained model could not be loaded...") exit() test_pairs = readFile(args.test_file) outputs = model.evaluatePairs(test_pairs, rand=False, char=args.char) writeToFile(outputs, os.path.join(args.output_dir, "output.pkl")) reference = [] hypothesis = [] for (hyp, ref) in outputs: if args.char or args.char_bleu: reference.append([list(ref)]) hypothesis.append(list(hyp)) else: reference.append([ref.split(" ")]) hypothesis.append(hyp.split(" ")) bleu_score = compute_bleu(reference, hypothesis) print("Bleu Score: " + str(bleu_score)) print( model.evaluateAndShowAttention( "L'anglais n'est pas facile pour nous.", char=args.char)) print( model.evaluateAndShowAttention( "J'ai dit que l'anglais est facile.", char=args.char)) print( model.evaluateAndShowAttention( "Je n'ai pas dit que l'anglais est une langue facile.", char=args.char)) print( model.evaluateAndShowAttention("Je fais un blocage sur l'anglais.", char=args.char)) else: input_lang, output_lang, pairs = prepareData(args.train_file) print(random.choice(pairs)) if args.char: model = EncoderDecoder(args.hidden_size, input_lang.n_chars, output_lang.n_chars, args.drop, args.tfr, args.max_length, args.lr, args.simple, args.bidirectional, args.dot, False, 1) else: model = EncoderDecoder(args.hidden_size, input_lang.n_words, output_lang.n_words, args.drop, args.tfr, args.max_length, args.lr, args.simple, args.bidirectional, args.dot, args.multi, args.num_layers) model.trainIters(pairs, input_lang, output_lang, args.n_iters, print_every=args.print_every, plot_every=args.plot_every, char=args.char) model.save(args.output_dir) model.evaluatePairs(pairs, char=args.char)
import pygame import button, data, funcs from constants import * pygame.font.init() blockList = [] bulletList = [] enemyList = [] decalList = [] health_battery = [] barList = [] mainButtonList = [button.textButton('Choose Level', 20, WIN_WIDTH/2, (WIN_HEIGHT/2)-40), button.textButton('Instructions', 20, WIN_WIDTH/2, (WIN_HEIGHT/2)), button.textButton('Quit', 20, WIN_WIDTH/2, (WIN_HEIGHT/2)+40)] lvl_names, times, player_pos, beatTimes = data.readFile('level data.txt') levelButtonList = [] timeList = [] beatList = [] for level in range(len(lvl_names)): levelButtonList.append(button.textButton('%s' %lvl_names[level], 40, 0, -50)) timeList.append(button.textButton('%s s' %float(times[level]), 30, 0, -50)) beatList.append(button.textButton('%s s' %float(beatTimes[level]), 30, 0, -50)) pageButtonList = [button.textButton('<=', 30, 50, WIN_HEIGHT-50), button.textButton('main', 20, WIN_WIDTH/2, WIN_HEIGHT-50), button.textButton('=>', 30, WIN_WIDTH-50, WIN_HEIGHT-50)] characterButtonList = []
import sys import data import models import matplotlib.pyplot as plt training_set, testing_set = data.readFile(sys.argv[1]) training_X, training_Y = models.features_labels(training_set) testing_X, testing_Y = models.features_labels(testing_set) model, err = models.gbr(training_X, training_Y, testing_X, testing_Y) prediction = model.predict(testing_X) diff = [testing_Y[i] - prediction[i] for i in range(len(testing_Y))] plt.plot(testing_Y, diff, 'bo') plt.axhline(0, color='red') plt.savefig(r"figure_1.png")