def get_loader(data_path='data/vctk', max_seq_len=1000, batch_size=64, nspk=22): dataset = NpzFolder(data_path + '/numpy_features_valid', nspk == 1) loader = NpzLoader(dataset, max_seq_len=max_seq_len, batch_size=batch_size, num_workers=4, pin_memory=True) return loader
def get_loaders(data_path='data/vctk', max_seq_len=1000, batch_size=64, nspk=22): # wrap train dataset train_dataset = NpzFolder(data_path + '/numpy_features', nspk == 1) train_loader = NpzLoader(train_dataset, max_seq_len=max_seq_len, batch_size=batch_size, num_workers=4, pin_memory=True, shuffle=True) # wrap validation dataset valid_dataset = NpzFolder(data_path + '/numpy_features_valid', nspk == 1) valid_loader = NpzLoader(valid_dataset, max_seq_len=max_seq_len, batch_size=batch_size, num_workers=4, pin_memory=True) return train_loader, valid_loader
def main(): parser = argparse.ArgumentParser(description='PyTorch Loop') # Env options: parser.add_argument('--epochs', type=int, default=92, metavar='N', help='number of epochs to train (default: 92)') parser.add_argument('--seed', type=int, default=10, metavar='S', help='random seed (default: 3)') parser.add_argument('--expName', type=str, default='vctk', metavar='E', help='Experiment name') parser.add_argument('--data', default='data/vctk', metavar='D', type=str, help='Data path') parser.add_argument('--checkpoint', default='', metavar='C', type=str, help='Checkpoint path') parser.add_argument('--gpu', default=0, metavar='G', type=int, help='GPU device ID') # Data options parser.add_argument('--max-seq-len', type=int, default=1000, help='Max sequence length for tbptt') parser.add_argument('--batch-size', type=int, default=64, help='Batch size') # Model options parser.add_argument('--nspk', type=int, default=22, help='Number of speakers') # init args = parser.parse_args() args.expName = os.path.join('checkpoints', args.expName) torch.cuda.set_device(args.gpu) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) logging = create_output_dir(args) # data valid_dataset = NpzFolder(args.data + '/numpy_features_valid', args.nspk == 1) valid_loader = NpzLoader(valid_dataset, max_seq_len=args.max_seq_len, batch_size=args.batch_size, num_workers=4, pin_memory=True) # load model model, norm = model_def(args.checkpoint, gpu=args.gpu, valid_loader=valid_loader) # Begin! eval_loss = evaluate(model, norm, valid_loader, logging)
# init args = parser.parse_args() args.expName = os.path.join('checkpoints', args.expName) torch.cuda.set_device(args.gpu) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) logging = create_output_dir(args) vis = visdom.Visdom(env=args.expName) # data logging.info("Building dataset.") train_dataset = NpzFolder(args.data + '/numpy_features', args.nspk == 1) train_loader = NpzLoader(train_dataset, max_seq_len=args.max_seq_len, batch_size=args.batch_size, num_workers=4, pin_memory=True, shuffle=True) valid_dataset = NpzFolder(args.data + '/numpy_features_valid', args.nspk == 1) valid_loader = NpzLoader(valid_dataset, max_seq_len=args.max_seq_len, batch_size=args.batch_size, num_workers=4, pin_memory=True) logging.info("Dataset ready!") def train(model, criterion, optimizer, epoch, train_losses): total = 0 # Reset every plot_every