def evaluate(): xinp, yout, idx = dataShuffle(positive_pth, negative_pth) data_generator = valGen(xinp, yout, idx, batch_size) x = tf.placeholder(tf.float32, [None, height, width, channel], name="inputs") y_hat = tf.placeholder(tf.float32, [None], name="predicts") y_true = tf.placeholder(tf.float32, [None], name="labels") is_training = tf.placeholder(tf.bool, name="is_train") vgg = VGG() out = vgg.model(x, is_training) prob = tf.nn.softmax(out) y_pred = tf.argmax(prob, axis=1) auc_value, auc_op = tf.metrics.auc(y_true, y_hat) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, model_saved_path) inputs, labels = data_generator.__next__() y_hat_ = [] y_true_ = [] # for inputs, labels in data_generator: #predict = sess.run(y_pred, {x: inputs, is_training: is_train}) predict = sess.run(y_pred, {x: inputs, is_training: is_train}) y_hat_ += list(predict) y_true_ += list(labels) print("labels : ", labels) print("predict : ", predict) #predict, _, val = sess.run([y_pred, auc_op, auc_value], {x: inputs, y_true: labels, is_training: is_train}) sess.run(tf.local_variables_initializer()) sess.run(auc_op, {y_true: y_true_, y_hat: y_hat_}) val = sess.run(auc_value) print(y_hat_) print(y_true_) print("AUC : ", val) print(metrics.accuracy_score(y_true_, y_hat_))
def train(): pf = os.listdir(positive_path) nf = os.listdir(negative_path) num_examples = int((len(pf) + len(nf)) * 0.7) # data_generator = dataGen(positive_path, negative_path, batch_size) val_data_generator = valGen(positive_path, negative_path, batch_size) x = tf.placeholder(tf.float32, [None, height, width, channels], name="inputs") y_true = tf.placeholder(tf.float32, [None], name="labels") is_training = tf.placeholder(tf.bool, name="is_train") # forward vgg = VGG() logit = vgg.model(x, is_training) prob = tf.nn.sigmoid(logit, name="prob") # compute acc y_pred = tf.argmax(prob, axis=1) correct_prediction = tf.equal(tf.cast(y_pred, tf.float32), y_true) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('acc', accuracy) # loss function # cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=logit) logit = tf.squeeze(logit, axis=1) # cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=logit) cross_entropy = focal_loss(y_true, logit) cross_entropy_mean = tf.reduce_mean(cross_entropy) # print([v for v in tf.trainable_variables()]) l2_loss = regular_rate * tf.add_n([ tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables() ]) loss = cross_entropy_mean + l2_loss tf.summary.scalar('loss', loss) # global step global_step = tf.Variable(0, trainable=False) # exponential moving average variable_averages = tf.train.ExponentialMovingAverage( moving_average_decay, global_step) # update weight using moving average variables_averages_op = variable_averages.apply(tf.trainable_variables()) # learning rate exponential decay learning_rate = tf.train.exponential_decay(lr, global_step, num_examples // batch_size, 0.96, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Passing global_step to minimize() will increment it at each step. train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize( loss, global_step=global_step) # merge train step and variables averages op merged = tf.summary.merge_all() with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') # model save sav_iter = [i for i in range(epochs * num_examples // batch_size)] sav_acc = [] saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) summary_writer_t = tf.summary.FileWriter(log_saved_path + '/train', sess.graph) summary_writer_v = tf.summary.FileWriter(log_saved_path + '/valid', sess.graph) for epoch in range(epochs): iteration = 0 data_generator = dataGen(positive_path, negative_path, batch_size) for inputs, labels in data_generator: # print(inputs.shape) # print(labels.shape) probability, loss_value, acc_value, summary, step, clr, _ = sess.run( [ prob, loss, accuracy, merged, global_step, learning_rate, train_op ], { x: inputs, y_true: labels, is_training: is_train }) print( "[epoch : %2d / iter : %5d] loss: %.5f acc: %.5f lr: %.5f" % (epoch, iteration, loss_value, acc_value, clr)) sav_acc.append(acc_value) summary_writer_t.add_summary(summary, step) iteration += 1 # break # validation val_inputs, val_labels = val_data_generator.__next__() summary_v = sess.run(merged, { x: val_inputs, y_true: val_labels, is_training: is_train }) summary_writer_v.add_summary(summary_v, epoch) print("Saving model.....") saver.save(sess, model_saved_path + "/epoch_%d.ckpt" % epoch) summary_writer_t.close() summary_writer_v.close()
def train(): pf = os.listdir(positive_path) nf = os.listdir(negative_path) num_examples = int((len(pf) + len(nf)) * 0.7) # data_generator = dataGen(positive_path, negative_path, batch_size) x = tf.placeholder(tf.float32, [None, height, width, channels], name="inputs") y_true = tf.placeholder(tf.float32, [None], name="labels") is_training = tf.placeholder(tf.bool, name="is_train") # forward vgg = VGG() logit = vgg.model(x, is_training) prob = tf.nn.sigmoid(logit, name="prob") print("prob shape : ", prob.get_shape().as_list()) print("y_true shape : ", y_true.get_shape().as_list()) # compute acc # y_pred = tf.where(prob > 0.5, True, False) y_pred = tf.cast(tf.greater(prob, 0.5), tf.float32) correct_prediction = tf.equal(y_pred, y_true) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar('acc', accuracy) # loss function # labels = tf.expand_dims(y_true, axis=1) # cross_entropy = tf.nn.weighted_cross_entropy_with_logits(labels, logit, 9) # logit = tf.squeeze(logit, axis=1) # cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=logit) prob = tf.squeeze(prob, axis=1) print("prob shape : ", prob.get_shape().as_list()) cross_entropy = focal_loss(y_true, prob) cross_entropy_mean = tf.reduce_mean(cross_entropy) # print([v for v in tf.trainable_variables()]) l2_loss = regular_rate * tf.add_n([ tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables() ]) loss = cross_entropy_mean + l2_loss tf.summary.scalar('loss', loss) # global step global_step = tf.Variable(0, trainable=False) # exponential moving average variable_averages = tf.train.ExponentialMovingAverage( moving_average_decay, global_step) # update weight using moving average variables_averages_op = variable_averages.apply(tf.trainable_variables()) # learning rate exponential decay learning_rate = tf.train.exponential_decay(lr, global_step, num_examples // batch_size, 0.96, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Passing global_step to minimize() will increment it at each step. # train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) train_step = tf.train.MomentumOptimizer( learning_rate, momentum=0.9).minimize(loss, global_step=global_step) # train_step = tf.train.AdamOptimizer(lr).minimize(loss, global_step=global_step) merged = tf.summary.merge_all() # merge train step and variables averages op with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') # model save saver = tf.train.Saver(max_to_keep=20) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) summary_writer_t = tf.summary.FileWriter(log_saved_path, sess.graph) for epoch in range(epochs): iteration = 0 inpu, outp, idx = dataShuffle(positive_path, negative_path) data_generator = dataGen(inpu, outp, idx, batch_size) val_generator = valGen(inpu, outp, idx, batch_size) for inputs, labels in data_generator: probability, loss_value, acc_value, summary, step, clr, _ = sess.run( [ prob, loss, accuracy, merged, global_step, learning_rate, train_op ], { x: inputs, y_true: labels, is_training: is_train }) print( "[epoch : %2d / iter : %5d] loss: %.5f acc: %.5f lr: %.5f" % (epoch, iteration, loss_value, acc_value, clr)) summary_writer_t.add_summary(summary, step) iteration += 1 # validation average_acc = 0.0 vcnt = 0 for vi, vl in val_generator: # val_inputs, val_labels = val_data_generator.__next__() va = sess.run(accuracy, { x: vi, y_true: vl, is_training: is_train }) average_acc = average_acc + va vcnt += 1 print("validation acc : ", average_acc / vcnt) print("Saving model.....") if (epoch + 1) % 10 == 0: saver.save(sess, model_saved_path + "/epoch_%d.ckpt" % epoch) summary_writer_t.close()
def train(): pf = os.listdir(positive_path) nf = os.listdir(negative_path) num_examples = int((len(pf) + len(nf)) * 0.7) # data_generator = dataGen(positive_path, negative_path, batch_size) x = tf.placeholder(tf.float32, [None, height, width, channels], name="inputs") y_true = tf.placeholder(tf.float32, [None], name="labels") is_training = tf.placeholder(tf.bool, name="is_train") # forward vgg = VGG() logit = vgg.model(x, is_training) prob = tf.nn.sigmoid(logit, name="prob") # auc y_hat = tf.cast(tf.greater(prob, 0.5), tf.float32) y_hat = tf.squeeze(y_hat, axis=1) auc_value, auc_op = tf.metrics.auc(y_true, y_hat) # tf.summary.scalar('auc', auc_value) # loss function logit = tf.squeeze(logit, axis=1) cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=y_true, logits=logit) # cross_entropy = focal_loss(labels=y_true, logits=logit) cross_entropy_mean = tf.reduce_mean(cross_entropy) # print([v for v in tf.trainable_variables()]) l2_loss = regular_rate * tf.add_n([tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()]) loss = cross_entropy_mean + l2_loss tf.summary.scalar('loss', loss) # global step global_step = tf.Variable(0, trainable=False) # exponential moving average variable_averages = tf.train.ExponentialMovingAverage(moving_average_decay, global_step) # update weight using moving average variables_averages_op = variable_averages.apply(tf.trainable_variables()) # learning rate exponential decay learning_rate = tf.train.exponential_decay(lr, global_step, num_examples // batch_size , 1, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Passing global_step to minimize() will increment it at each step. # train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) train_step = tf.train.MomentumOptimizer(learning_rate, momentum=0.9).minimize(loss, global_step=global_step) merged = tf.summary.merge_all() # merge train step and variables averages op with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') # model save sav_iter = [i for i in range(epochs * num_examples // batch_size)] sav_acc = [] saver = tf.train.Saver(max_to_keep=20) with tf.Session() as sess: # 断点继续训练 # saver.restore(sess, '/home/sdc/xujiping_sde/saved_model_cbr' + '/epoch_s1_29.ckpt') # print("loading saved model done") sess.run(tf.global_variables_initializer()) summary_writer_t = tf.summary.FileWriter(log_saved_path, sess.graph) summary_writer_v = tf.summary.FileWriter(log_saved_path, sess.graph) for epoch in range(epochs): iteration = 0 inpu, outp, idx = dataShuffle(positive_path, negative_path) data_generator = dataGen(inpu, outp, idx, batch_size) val_generator = valGen(inpu, outp, idx, batch_size) for inputs, labels in data_generator: # print(inputs.shape) # print(labels.shape) probability, loss_value, summary, step, clr, _ = sess.run( [prob, loss, merged, global_step, learning_rate, train_op], {x: inputs, y_true: labels, is_training: is_train} ) print("[epoch : %2d / iter : %5d] loss: %.5f, lr: %.5f" % (epoch, iteration, loss_value, clr)) summary_writer_t.add_summary(summary, step) iteration += 1 # break # validation val_true = [] val_pred = [] for vi, vl in val_generator: # val_inputs, val_labels = val_data_generator.__next__() pred = sess.run(y_hat, {x: vi, y_true: vl, is_training: is_train}) val_true += list(vl) val_pred += list(pred) summary = sess.run(merged, {x: vi, y_true: vl, is_training: is_train}) summary_writer_v.add_summary(summary, step) print("Auc value : ", roc_auc_score(np.array(val_true), np.array(val_pred))) print("Saving model.....") if (epoch + 1) % 10 == 0 : saver.save(sess, model_saved_path + "/epoch_s1_%d.ckpt" % epoch) summary_writer_t.close() summary_writer_v.close()