Ejemplo n.º 1
0
        #    loss_gen_rec = opts['betta2']*generative_criterion_rec(reconstructions, inputs)
        #    loss_gen_cl = opts['betta1']*generative_criterion_cl(classification_reconstructed, orig_classes)
        #print('reconstruction loss: {}'.format(loss_gen_rec.item()))
        #print('classification loss: {}'.format(loss_gen_cl.item()))
        loss_gen = loss_gen_cl + loss_gen_rec
        loss_gen.backward()
        generative_optimizer.step()
        generative_optimizer.zero_grad()
        if idx_stream % 20 == 0:
            print(
                'interval [{}/{}], classification loss: {:.4f}, generative loss {:.4f}'
                .format(interval, stream_duration, classification_loss.item(),
                        loss_gen.item()))

    # At the end of each interval we update the code storage
    codes_storage.transform_data(
        nn.Sequential(gen_model_old.decoder, gen_model.encoder))
    # And store the encoded streaming data + the latest streaming batch in original shape
    real_buffer.load_from_tensor_dataset(full_original_trainset,
                                         stream_classes)
    codes_storage.load_from_tensor_dataset(full_original_trainset,
                                           stream_classes, gen_model.encoder)

    acc_real = sup_functions.test_classifier(classifier, test_loader)
    acc_fake = sup_functions.test_classifier_on_generator(
        classifier, gen_model, test_loader)
    print('Real test accuracy after {} intervals: {:.8f}'.format(
        interval + 1, acc_real))
    print('Reconstructed test accuracy after {} intervals: {:.8f}'.format(
        interval + 1, acc_fake))
    results['accuracies'].append(acc_real)
    results['known_classes'].append(len(known_classes))
Ejemplo n.º 2
0
    # Updating the auto-encoder
    
    reconstructions = gen_model(inputs)
    orig_classes = classifier(inputs).detach()
    classification_reconstructed = classifier(reconstructions)
    loss_gen_rec = opts['betta2']*generative_criterion_rec(reconstructions, inputs)
    loss_gen_cl = opts['betta1']*generative_criterion_cl(classification_reconstructed, orig_classes)
    #print('reconstruction loss: {}'.format(loss_gen_rec.item()))
    #print('classification loss: {}'.format(loss_gen_cl.item()))
    loss_gen = loss_gen_cl + loss_gen_rec
    loss_gen.backward()
    generative_optimizer.step()
    generative_optimizer.zero_grad()   
    
  # At the end of each interval we update the code storage  
  historical_buffer.transform_data(nn.Sequential(gen_model_old.decoder, gen_model.encoder))
  # And store the encoded streaming data + the latest streaming batch in original shape
  for X_real, Y_real in stream_loader:
    historical_buffer.add_batch(gen_model.encoder(X_real.cuda()).data, stream_class[0])
    real_buffer.add_batch(X_real.cuda(), stream_class[0])
    

  acc_real = test_classifier(classifier, test_loader)
  acc_fake = test_classifier_on_generator(classifier, gen_model, test_loader)
  print('Real test accuracy after {} intervals: {:.8f}'.format(interval+1, acc_real))    
  print('Reconstructed test accuracy after {} intervals: {:.8f}'.format(interval+1, acc_fake))    
  
  #if acc > max_accuracy:
    #max_accuracy = acc
    #torch.save(classifier.state_dict(), './pretrained_models/classifier_6_classes_mixed_data.pth')
      
Ejemplo n.º 3
0
generative_criterion_cl = nn.MSELoss()
generative_criterion_cl.cuda()
generative_criterion_rec = nn.MSELoss()
generative_criterion_rec.cuda()

acc = test_classifier(classifier, test_loader)
acc_rec = test_classifier_on_generator(classifier, gen_model, test_loader)
print('Classification accuracy prior to training: {:.4f}'.format(acc))
print('Test accuracy on reconstructed testset: {}'.format(acc_rec))

accuracies = []
max_accuracy = 0
for epoch in range(training_epochs):  # loop over the dataset multiple times
#  if epoch % reconstruct_every == 0 and epoch>=1:
  print('Transforming data with the latest autoencoder')
  data_buffer.transform_data(gen_model)
  if real_batches_to_add>0:
    data_buffer.add_batches_from_dataset(hist_data, list(range(30)), real_batches_to_add)
  data_buffer.make_tensor_dataset()
  trainset = data_buffer.tensor_dataset
  train_loader = DataLoader(trainset, batch_size=10*opts['batch_size'], shuffle=True, drop_last=True)
  for idx, (train_X, train_Y, _) in enumerate(train_loader):
    inputs = train_X.cuda()
    # ===================forward=====================
    #reconstructions = gen_model(inputs)
    #orig_classes = classifier(inputs)
    #classification_reconstructed = classifier(reconstructions)
    #loss_gen = generative_criterion(classification_reconstructed, orig_classes)
    #loss_gen.backward()
    #generative_optimizer.step()
    #generative_optimizer.zero_grad()