Ejemplo n.º 1
0
    multilabel, load_previous = sys.argv[1:]

    print multilabel, load_previous

    if multilabel == 'multi':
        multilabel = True
    else:
        multilabel = False

    if load_previous == 'load':
        load_previous = True
    else:
        load_previous = False

    train_set = Corpus(DATA_DIR + TRAIN_FILE, DATA_DIR + TRAIN_LABS)

    X_train, X_val, y_train, y_val, nb_classes, word_index = load_data(
        train_set, multilabel)

    if load_previous:
        model = load_model(STAMP, multilabel)
    else:
        model = build_model(nb_classes, word_index, EMBEDDING_DIM,
                            MAX_SEQUENCE_LENGTH, STAMP, multilabel)

    if multilabel:
        monitor_metric = 'val_f1_score'
    else:
        monitor_metric = 'val_loss'
Ejemplo n.º 2
0
	return model


if __name__ == '__main__':

	epochs = 2000
	max_len = 40
	batch_size = 512
	data_sample = 0.5
	skip = 3
	STAMP = 'language_model'

	data_set = Corpus(train_data,val_data,
		max_len=max_len,
		batch_size=batch_size,
		data_sample=data_sample,
		skip=skip)

	with open('char2id.json', 'w') as fp:
		json.dump(data_set.char2id, fp)
	with open('id2char.json', 'w') as fp:
		json.dump(data_set.id2char, fp)
	
	model = build_model(max_len,data_set.vocab_size)

	print(STAMP)

	model_json = model.to_json()
	with open(STAMP + ".json", "w") as json_file:
		json_file.write(model_json)