def test_record_allocation_angle_type_with_zeros(self):
        data_set = DriveDataSet([
            FeedingData(None, 0.0),
            FeedingData(None, 0.1),
            FeedingData(None, -0.1),
            FeedingData(None, 0.25),
            FeedingData(None, -0.25),
            FeedingData(None, -1),
            FeedingData(None, 0.001),
            FeedingData(None, 0.251),
            FeedingData(None, -0.249),
        ])

        allocator = AngleSegmentRecordAllocator(
            data_set, AngleSegment((-1.0, -0.25), 10),
            AngleSegment((-0.25, -0.249), 10), AngleSegment((-0.249, -0.1),
                                                            10),
            AngleSegment((-0.1, 0), 10), AngleSegment((0, 0.001), 10),
            AngleSegment((0.001, 0.1), 10), AngleSegment((0.1, 0.25), 10),
            AngleSegment((0.25, 0.251), 10), AngleSegment((0.251, 1.001), 10),
            AngleSegment((1.001, 2.0), 10))
        records = allocator.allocate(any_number(), any_number(), len(data_set))
        self.assertEqual(same_range_angles(allocator, records, 0), [0.0])
        self.assertEqual(same_range_angles(allocator, records, 0.1), [0.1])
        self.assertEqual(same_range_angles(allocator, records, -0.1), [-0.1])
        self.assertEqual(same_range_angles(allocator, records, 0.25), [0.25])
        self.assertEqual(same_range_angles(allocator, records, -0.25), [-0.25])
        self.assertEqual(same_range_angles(allocator, records, 1), [0.251])
        self.assertEqual(same_range_angles(allocator, records, -1), [-1])
        self.assertEqual(same_range_angles(allocator, records, 0.001), [0.001])
        self.assertEqual(same_range_angles(allocator, records, -0.001), [-0.1])
        self.assertEqual(same_range_angles(allocator, records, 0.252), [0.251])
        self.assertEqual(same_range_angles(allocator, records, -0.249),
                         [-0.249])
def segment_normal_distribution_shift_flip_brightness_shadow_reg():
    data_set = DriveDataSet.from_csv(
        "datasets/udacity-sample-track-1/driving_log.csv",
        crop_images=True,
        all_cameras_images=True,
        filter_method=drive_record_filter_include_all)
    # fine tune every part of training data so that make it meat std distrubtion
    allocator = AngleSegmentRecordAllocator(
        data_set,
        AngleSegment((-1.5, -0.5), 10),  # big sharp left
        AngleSegment((-0.5, -0.25), 14),  # sharp left
        AngleSegment((-0.25, -0.249),
                     3),  # sharp turn left (zero right camera)
        AngleSegment((-0.249, -0.1), 10),  # big turn left
        AngleSegment((-0.1, 0), 11),  # straight left
        AngleSegment((0, 0.001), 4),  # straight zero center camera
        AngleSegment((0.001, 0.1), 11),  # straight right
        AngleSegment((0.1, 0.25), 10),  # big turn right
        AngleSegment((0.25, 0.251), 3),  # sharp turn right (zero left camera)
        AngleSegment((0.251, 0.5), 14),  # sharp right
        AngleSegment((0.5, 1.5), 10)  # big sharp right
    )
    # a pipe line with shift -> flip -> brightness -> shadow augment processes
    augment = pipe_line_generators(
        shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator,
        brightness_image_generator(0.35), shadow_generator)
    data_generator = DataGenerator(allocator.allocate, augment)
    model = nvidia_with_regularizer(input_shape=data_set.output_shape(),
                                    dropout=0.2)
    Trainer(model,
            learning_rate=0.0001,
            epoch=45,
            multi_process=use_multi_process,
            custom_name=inspect.stack()[0][3]).fit_generator(
                data_generator.generate(batch_size=256))
Ejemplo n.º 3
0
    def test_angle_distribution_large_speed(self):
        filter_method = drive_record_filter_include_all
        tubgroup = TubGroup("../data/log_w_6,../data/log_w_7")
        dataset = DriveDataSet.from_tubgroup(tubgroup.df,
                                             filter_method=filter_method,
                                             fake_image=True)

        plt = Plot.angle_distribution(dataset.angles())
        plt.savefig("angle/angle_distribution_original_faster_max_speed.jpg")
Ejemplo n.º 4
0
def create_real_dataset(filter_method):
    tubgroup = TubGroup(
        "data/log_20,data/log_21,data/log_23,data/log_1,data/log_2,data/log_3,data/log_4,data/log_w_6,data/log_w_7"
    )

    print("splitting train / validation 0.9/0.1")

    train_df = tubgroup.df.sample(frac=0.9, random_state=200)
    val_df = tubgroup.df.drop(train_df.index)

    train_data_set = DriveDataSet.from_tubgroup(train_df,
                                                filter_method=filter_method,
                                                fake_image=False)
    val_data_set = DriveDataSet.from_tubgroup(val_df,
                                              filter_method=filter_method,
                                              fake_image=False)

    print("dataset created")

    return train_data_set, val_data_set
def raw_data_centre_left_right_image_crop():
    # crop_images=True was the only difference
    data_set = DriveDataSet.from_csv(
        "datasets/udacity-sample-track-1/driving_log.csv",
        crop_images=True,
        all_cameras_images=True,
        filter_method=drive_record_filter_include_all)
    allocator = RecordRandomAllocator(data_set)
    generator = image_itself
    data_generator = DataGenerator(allocator.allocate, generator)
    model = nvidia(input_shape=data_set.output_shape(), dropout=0.5)
    Trainer(model,
            learning_rate=0.0001,
            epoch=10,
            custom_name=inspect.stack()[0][3]).fit_generator(
                data_generator.generate(batch_size=128))
def raw_data_centre_left_right_crop_shift_flip():
    data_set = DriveDataSet.from_csv(
        "datasets/udacity-sample-track-1/driving_log.csv",
        crop_images=True,
        all_cameras_images=True,
        filter_method=drive_record_filter_include_all)
    allocator = RecordRandomAllocator(data_set)
    # shift_image_generator was the only difference
    generator = pipe_line_generators(
        shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator)
    data_generator = DataGenerator(allocator.allocate, generator)
    model = nvidia(input_shape=data_set.output_shape(), dropout=0.5)
    Trainer(model,
            learning_rate=0.0001,
            epoch=20,
            multi_process=use_multi_process,
            custom_name=inspect.stack()[0][3]).fit_generator(
                data_generator.generate(batch_size=128))
    def test_record_allocation_angle_type_with_zeros_in_range(self):
        data_set = DriveDataSet([
            FeedingData(None, 0.03),
            FeedingData(None, -0.03),
            FeedingData(None, 0.15),
            FeedingData(None, -0.15),
            FeedingData(None, 0.26),
            FeedingData(None, -0.26)
        ])
        allocator = AngleTypeWithZeroRecordAllocator(data_set, any_number(),
                                                     any_number(),
                                                     any_number(),
                                                     any_number(),
                                                     any_number(), 0.25)

        self.assertEqual(angles(allocator.zero_angles), [])
        self.assertEqual(angles(allocator.zero_angles_left), [])
        self.assertEqual(angles(allocator.zero_angles_right), [])
        self.assertEqual(angles(allocator.center_angles), [0.03, -0.03])
        self.assertEqual(angles(allocator.left_angles), [-0.15, -0.26])
        self.assertEqual(angles(allocator.right_angles), [0.15, 0.26])
def raw_data_centre_image_no_dropout():
    # Create DriveDataSet from csv file, you can specify crop image, using all cameras and which data will included in
    data_set = DriveDataSet.from_csv(
        "datasets/udacity-sample-track-1/driving_log.csv",
        crop_images=False,
        all_cameras_images=False,
        filter_method=drive_record_filter_include_all)
    # What the data distribution will be, below example just randomly return data from data set, so that the
    # distribution will be same with what original data set have
    allocator = RecordRandomAllocator(data_set)
    # what's the data augment pipe line have, this have no pipe line, just the image itself
    augment = image_itself
    # connect allocator and augment together
    data_generator = DataGenerator(allocator.allocate, augment)
    # create the model
    model = nvidia(input_shape=data_set.output_shape(), dropout=0.0)
    # put everthing together, start a real Keras training process with fit_generator
    Trainer(model,
            learning_rate=0.0001,
            epoch=10,
            custom_name=inspect.stack()[0][3]).fit_generator(
                data_generator.generate(batch_size=128))
def segment_left_centre_right():
    data_set = DriveDataSet.from_csv(
        "datasets/udacity-sample-track-1/driving_log.csv",
        crop_images=True,
        all_cameras_images=True,
        filter_method=drive_record_filter_include_all)

    allocator = AngleTypeWithZeroRecordAllocator(
        data_set,
        left_percentage=20,
        right_percentage=20,
        zero_percentage=8,
        zero_left_percentage=6,
        zero_right_percentage=6,
        left_right_image_offset_angle=0.25)
    generator = pipe_line_generators(
        shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator,
        brightness_image_generator(0.25), shadow_generator)
    data_generator = DataGenerator(allocator.allocate, generator)
    model = nvidia(input_shape=data_set.output_shape(), dropout=0.5)
    Trainer(model, learning_rate=0.0001,
            epoch=10).fit_generator(data_generator.generate(batch_size=128))
Ejemplo n.º 10
0
 def create_real_dataset(filter_method):
     tubgroup = TubGroup("../data/aws")
     return DriveDataSet.from_tubgroup(tubgroup.df,
                                       filter_method=filter_method,
                                       fake_image=False)
 def test_data_generator_should_able_to_extend_easily(self):
     dataset = DriveDataSet.from_csv("resources/driving_log_mini.csv")
     self.assertEqual(len(dataset), 6)