Ejemplo n.º 1
0
def main(config, resume):
    train_logger = Logger()

    if config['data_loader']['dataset'] == 'icdar2015':
        # ICDAR 2015
        data_root = pathlib.Path(config['data_loader']['data_dir'])
        ICDARDataset2015 = ICDAR(data_root, year='2015')
        data_loader = OCRDataLoaderFactory(config, ICDARDataset2015)
        train = data_loader.train()
        val = data_loader.val()
    elif config['data_loader']['dataset'] == 'synth800k':
        data_loader = SynthTextDataLoaderFactory(config)
        train = data_loader.train()
        val = data_loader.val()

    os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in config['gpus']])
    model = eval(config['arch'])(config['model'])
    model.summary()

    loss = eval(config['loss'])(config['model'])
    metrics = [eval(metric) for metric in config['metrics']]

    trainer = Trainer(model, loss, metrics,
                      resume=resume,
                      config=config,
                      data_loader=train,
                      valid_data_loader=val,
                      train_logger=train_logger,
                      toolbox = Toolbox)

    trainer.train()
Ejemplo n.º 2
0
def main(config, resume):
    train_logger = Logger()

    if config['data_loader']['dataset'] == 'icdar2015':
        # ICDAR 2015
        data_root = pathlib.Path(config['data_loader']['data_dir'])
        ICDARDataset2015 = ICDAR(data_root, year='2015')
        data_loader = OCRDataLoaderFactory(config, ICDARDataset2015)
        train = data_loader.train()
        val = data_loader.val()
    elif config['data_loader']['dataset'] == 'synth800k':
        data_loader = SynthTextDataLoaderFactory(config)
        train = data_loader.train()
        val = data_loader.val()
    elif config['data_loader']['dataset'] == 'mydataset':
        image_root = pathlib.Path(config['data_loader']['image_dir'])
        annotation_dir = pathlib.Path(config['data_loader']['annotation_dir'])
        print('alpha1. image_root = ' + str(image_root) +
              ', annotation_dir = ' + str(annotation_dir))
        data_loader = OCRDataLoaderFactory(
            config, MyDataset(image_root, annotation_dir))
        train = data_loader.train()
        val = data_loader.val()

    #print(type(train))
    #print(train)

    os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
        [str(i) for i in config['gpus']])
    model = eval(config['arch'])(config)
    #model.summary()

    loss = eval(config['loss'])(config['model'])
    metrics = [eval(metric) for metric in config['metrics']]

    finetune_model = config['finetune']

    trainer = Trainer(model,
                      loss,
                      metrics,
                      finetune=finetune_model,
                      resume=resume,
                      config=config,
                      data_loader=train,
                      valid_data_loader=val,
                      train_logger=train_logger,
                      toolbox=Toolbox,
                      keys=getattr(common_str, config['model']['keys']))

    print('alpha3: just before trainer.train()')
    trainer.train()
    print('alpha4: just after trainer.train()')
Ejemplo n.º 3
0
def main(config, resume):
    train_logger = Logger()

    if config['data_loader']['dataset'] == 'icdar2015':
        # ICDAR 2015
        data_root = pathlib.Path(config['data_loader']['data_dir'])
        ICDARDataset2015 = ICDAR(data_root, year='2015')
        data_loader = OCRDataLoaderFactory(config, ICDARDataset2015)
        train = data_loader.train()
        val = data_loader.val()
    elif config['data_loader']['dataset'] == 'synth800k':
        data_loader = SynthTextDataLoaderFactory(config)
        train = data_loader.train()
        val = data_loader.val()
    elif config['data_loader']['dataset'] == 'mydataset':
        data_root = pathlib.Path(config['data_loader']['data_dir'])
        data_loader = OCRDataLoaderFactory(config, MyDataset(data_root))
        train = data_loader.train()
        val = data_loader.val()

    os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
        [str(i) for i in config['gpus']])
    model = eval(config['arch'])(config,
                                 is_train=True)  # 将模型的字符串转化为表达式调用,然后实例化
    #model.summary() # 模型结构较为复杂,可以选择不打印模型结构,注释掉即可

    loss = eval(config['loss'])(config['model'])
    metrics = [eval(metric) for metric in config['metrics']]

    finetune_model = config['finetune']

    trainer = Trainer(
        model,
        loss,
        metrics,
        finetune=finetune_model,  # 导入预训练的模型,在此基础上继续训练
        resume=resume,
        config=config,
        data_loader=train,
        valid_data_loader=val,
        train_logger=train_logger,
        toolbox=Toolbox,
        keys=getattr(common_str, config['model']['keys']))

    trainer.train()