Ejemplo n.º 1
0
def plotSavedModel(modeindex):

    # Import Dataset
    modes = DataSet.learningModes
    data = DataSet(modes[modeindex])
    data.print()

    # Network Parameters
    WIDTH = data.WIDTH
    HEIGHT = data.HEIGHT
    CHANNELS = data.CHANNELS_IN
    NUM_INPUTS = WIDTH * HEIGHT * CHANNELS
    NUM_OUTPUTS = data.CHANNELS_OUT

    # Network Varibles and placeholders
    X = tf.placeholder(tf.float32, [None, HEIGHT, WIDTH, CHANNELS])  # Input
    Y = tf.placeholder(
        tf.float32, [None, HEIGHT, WIDTH, NUM_OUTPUTS])  # Truth Data - Output
    global_step = tf.Variable(0,
                              dtype=tf.int32,
                              trainable=False,
                              name='global_step')

    # Define loss and optimizer
    prediction = model.unet(X, NUM_OUTPUTS)

    # Setup Saver
    saver = tf.train.Saver()

    # Initalize varibles, and run network
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)

    ckpt = ckpt = tf.train.get_checkpoint_state('./checkpoints/' +
                                                modes[modeindex])
    if (ckpt and ckpt.model_checkpoint_path):
        print('Restoring Prev. Model ....')
        saver.restore(sess, ckpt.model_checkpoint_path)
        print('Model Loaded....')

        # Show results
        prediction = sess.run(prediction,
                              feed_dict={
                                  X: data.x_test,
                                  Y: data.y_test
                              })

        # Compute metrics of prediction
        metrics = do_metrics(prediction, data)

        # index = np.random.randint(data.x_test.shape[0])
        index = 4
        print('Selecting Test Image #', index)
        plot(data, prediction, modeindex, index)
Ejemplo n.º 2
0
def runNetwork(modeindex, doRestore=False):

    # Import Dataset
    modes = DataSet.learningModes
    data = DataSet(modes[modeindex])
    data.print()

    # Training Parameters
    learning_rate = 1e-4
    num_steps = 30000
    batch_size = 16
    display_step = 500
    save_step = 10000

    # Network Parameters
    WIDTH = data.WIDTH
    HEIGHT = data.HEIGHT
    CHANNELS = data.CHANNELS_IN
    NUM_INPUTS = WIDTH * HEIGHT * CHANNELS
    NUM_OUTPUTS = data.CHANNELS_OUT

    # Network Varibles and placeholders
    X = tf.placeholder(tf.float32, [None, HEIGHT, WIDTH, CHANNELS])  # Input
    Y = tf.placeholder(
        tf.float32, [None, HEIGHT, WIDTH, NUM_OUTPUTS])  # Truth Data - Output
    global_step = tf.Variable(0,
                              dtype=tf.int32,
                              trainable=False,
                              name='global_step')

    # Define loss and optimizer
    prediction = model.unet(X, NUM_OUTPUTS)
    loss = tf.reduce_mean(tf.square(prediction - Y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    trainer = optimizer.minimize(loss, global_step=global_step)

    # Setup Saver
    saver = tf.train.Saver()

    # Initalize varibles, and run network
    init = tf.global_variables_initializer()
    sess = tf.Session()
    sess.run(init)

    if (doRestore):
        ckpt = ckpt = tf.train.get_checkpoint_state('./checkpoints/' +
                                                    modes[modeindex])
        if (ckpt and ckpt.model_checkpoint_path):
            print('Restoring Prev. Model ....')
            saver.restore(sess, ckpt.model_checkpoint_path)
            print('Model Loaded....')

    print('Start Training: BatchSize:', batch_size, ' LearningRate:',
          learning_rate)

    # Train network
    _step = []
    _loss_train = []
    _loss_test = []

    t0 = time()
    for _ in range(num_steps):
        batch_xs, batch_ys = data.next_batch(batch_size)
        sess.run(trainer, feed_dict={X: batch_xs, Y: batch_ys})

        step = sess.run(global_step)

        if (step % display_step == 0):
            train_loss = sess.run(loss, feed_dict={X: batch_xs, Y: batch_ys})
            test_loss = sess.run(loss,
                                 feed_dict={
                                     X: data.x_test,
                                     Y: data.y_test
                                 })
            print("Step: " + str(step) + " Train Loss: %.4e" % train_loss +
                  " Test Loss: %.4e" % test_loss + " TIME: %g" % (time() - t0))
            _step.append(step)
            _loss_test.append(test_loss)
            _loss_train.append(train_loss)

        if (step % save_step == 0):
            saver.save(sess,
                       './checkpoints/' + modes[modeindex] + '/' +
                       modes[modeindex],
                       global_step=global_step)

    # Show results
    prediction = sess.run(prediction,
                          feed_dict={
                              X: data.x_test,
                              Y: data.y_test
                          })

    plot(data, prediction, modeindex, 0)

    # Plot loss
    plt.plot(_step, np.log10(_loss_train), label='training loss')
    plt.plot(_step, np.log10(_loss_test), label='test loss')
    plt.title('Mean Squared Error (MSE)')
    plt.xlabel('Epoches')
    plt.ylabel('ln(MSE)')
    plt.legend()
    plt.show()