Ejemplo n.º 1
0
def load_data(type=1):
    empty_extc = empty_extractor.PGEmptyFeatureExtractor()
    empty_data = empty_extc.load_data()
    empty_data = empty_data.tolist()
    # print('empty_data: ', empty_data)

    # 有目标的类别
    data_extractor = extractor.FeatureExtractor()  # 此处全使用默认的文件路径配置
    car_data_list = data_extractor.load_data()
    # car_data_list = random.shuffle(car_data_list)
    input_data = []

    # car_label = []
    for item in car_data_list:
        input_data.append(item[0])  # 强度信息
    random.shuffle(input_data)
    car_data = input_data[0:5490]

    # 存储起来用来做验证的
    pg_car_data = input_data[5490:]
    np.save(
        'D:\home\zeewei\projects\\77GRadar\model\cnn\\test_data_pg\\input_data_classification_pg_car_data.npy',
        pg_car_data)
    np.save(
        'D:\home\zeewei\projects\\77GRadar\model\cnn\\test_data_pg\\input_data_classification_pg_empty_data.npy',
        empty_data[300:])

    if type != 1:
        random.shuffle(car_data)
        car_data = car_data[0:300]
        road_extractor = classification_data_extractor.ClassificationExtractor(
        )
        road_car_data = road_extractor.load_car_data()
        random.shuffle(road_car_data)
        road_car_data = road_car_data[0:300]
        for item in road_car_data:
            car_data.append(item)
        road_empty_data = road_extractor.load_empty_data()
        print('road_empty_data: ', len(road_empty_data))
        road_empty_data = road_empty_data
        # random.shuffle(road_empty_data)

        # empty_data = np.concatenate(empty_data, road_empty_data)

        empty_data = empty_data[0:300]
        for item in road_empty_data:
            empty_data.append(item)

    return car_data, empty_data
Ejemplo n.º 2
0
def load_playground_data():
    if os.path.exists(PLAYGROUND_TRAIN_DATA_INPUT) \
            and os.path.exists(PLAYGROUND_TRAIN_DATA_LABEL) \
            and os.path.exists(PLAYGROUND_TEST_DATA_INPUT) \
            and os.path.exists(PLAYGROUND_TEST_DATA_LABEL):
        train_data_input = np.load(PLAYGROUND_TRAIN_DATA_INPUT)
        train_data_label = np.load(PLAYGROUND_TRAIN_DATA_LABEL)
        test_data_input = np.load(PLAYGROUND_TEST_DATA_INPUT)
        test_data_label = np.load(PLAYGROUND_TEST_DATA_LABEL)
    else:

        train_data_path = os.path.join(config.processed_data_dir,
                                       config.train_data_file_name)
        if os.path.exists(train_data_path):
            data_list = np.load(train_data_path)
        else:
            data_extractor = extractor.FeatureExtractor(
                origin_data_dir=config.origin_train_data_dir,
                processed_data_dir=config.processed_data_dir,
                input_data_file_name=config.train_data_file_name)
            data_list = data_extractor.load_data()
        random.shuffle(data_list)  # 随机打乱
        train_num = int(10 * len(data_list) /
                        10)  # 训练集与测试集7:3比例,此处如果测试集是按帧取数据而不是按录取的数据组划分则这么做
        train_data = data_list[0:train_num]
        test_data = data_list[train_num:]

        train_data_input = []
        train_data_label = []
        for item in train_data:
            train_data_input.append(item[0])
            train_data_label.append(item[1])

        test_data_input = []
        test_data_label = []
        for item in test_data:
            test_data_input.append(item[0])
            test_data_label.append(item[1])

        np.save(PLAYGROUND_TRAIN_DATA_INPUT, train_data_input)
        np.save(PLAYGROUND_TRAIN_DATA_LABEL, train_data_label)
        np.save(PLAYGROUND_TEST_DATA_INPUT, test_data_input)
        np.save(PLAYGROUND_TEST_DATA_LABEL, test_data_label)
    return train_data_input, train_data_label, test_data_input, test_data_label
Ejemplo n.º 3
0
def load_val_data():
    val_data_path = os.path.join(config.processed_data_dir,
                                 config.val_data_file_name)
    if os.path.exists(val_data_path):
        val_data = np.load(val_data_path)
    else:
        data_extractor = extractor.FeatureExtractor(
            origin_data_dir=config.origin_val_data_dir,
            processed_data_dir=config.processed_data_dir,
            input_data_file_name=config.val_data_file_name)
        val_data = data_extractor.load_data()
    random.shuffle(val_data)

    val_data_input = []
    val_data_label = []
    for item in val_data:
        val_data_input.append(item[0])
        val_data_label.append(item[1])
    return val_data_input, val_data_label
Ejemplo n.º 4
0
def load_all_data():
    pg_data_extractor = extractor.FeatureExtractor()  # 此处全使用默认的文件路径配置

    data_list = pg_data_extractor.load_data()  # 获取操场数据
    data_list = data_list.tolist()
    random.shuffle(data_list)
    data_list = data_list[0:3000]

    input_data, label_data, test_data, test_label_data = load_road_data(
    )  # 获取道路数据
    input_data = input_data.tolist()
    label_data = label_data.tolist()
    for i in range(len(input_data)):
        a_group_data = []
        a_group_data.append(input_data[i])
        a_group_data.append(label_data[i])
        data_list.append(a_group_data)

    for i in range(len(test_data)):
        a_group_data = []
        a_group_data.append(test_data[i])
        a_group_data.append(test_label_data[i])
        data_list.append(a_group_data)
    return data_list
Ejemplo n.º 5
0
def load_pg_data_by_range(start=0, end=64):
    '''
        start,开始的距离单元
        end,结束的距离单元位置
    '''
    pg_train_data_input_range = os.path.join(
        DATA_DIR,
        str(start) + '_' + str(end) + '_pg_train_data_input.npy')
    pg_train_data_label_range = os.path.join(
        DATA_DIR,
        str(start) + '_' + str(end) + '_pg_train_data_label.npy')

    pg_test_data_input_range = os.path.join(
        DATA_DIR,
        str(start) + '_' + str(end) + '_pg_test_data_input.npy')
    pg_test_data_label_range = os.path.join(
        DATA_DIR,
        str(start) + '_' + str(end) + '_pg_test_data_label.npy')

    if os.path.exists(pg_train_data_input_range) and os.path.exists(
            pg_train_data_label_range) and os.path.exists(
                pg_test_data_input_range) and os.path.exists(
                    pg_test_data_label_range):
        train_data_input = np.load(pg_train_data_input_range)
        train_data_label = np.load(pg_train_data_label_range)
        test_data_input = np.load(pg_test_data_input_range)
        test_data_label = np.load(pg_test_data_label_range)
        return train_data_input, train_data_label, test_data_input, test_data_label

    data_extractor = extractor.FeatureExtractor()  # 此处全使用默认的文件路径配置
    data_list = data_extractor.load_data()
    # print('划分数据集')
    # data_list = np.load('D:\home\zeewei\projects\\77GRadar\data\\all\\all_train_data.npy')
    remain_list = []
    '''
        对数据进行范围过滤
    '''
    for item in data_list:
        max_index = item[1].argmax(axis=0)  # 求每一行的最大下标,即目标的位置
        if max_index >= start and max_index <= end:
            remain_list.append(item)
    data_list = remain_list
    random.shuffle(data_list)  # 随机打乱
    train_num = int(7 * len(data_list) / 10)  # 训练集与测试集7:3比例
    train_data = data_list[0:train_num]
    test_data = data_list[train_num:]

    train_data_input = []
    train_data_label = []
    for item in train_data:
        train_data_input.append(item[0])
        train_data_label.append(item[1])

    test_data_input = []
    test_data_label = []
    for item in test_data:
        test_data_input.append(item[0])
        test_data_label.append(item[1])

    np.save(pg_train_data_input_range, train_data_input)
    np.save(pg_train_data_label_range, train_data_label)
    np.save(pg_test_data_input_range, test_data_input)
    np.save(pg_test_data_label_range, test_data_label)
    return train_data_input, train_data_label, test_data_input, test_data_label
Ejemplo n.º 6
0
Archivo: bp3.py Proyecto: wzce/77GRadar
def train():
    model = BP_Net().cuda(0)
    optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)

    # data_extractor = feature_extractor.FeatureExtractor()  # 此处全使用默认的文件路径配置

    data_extractor = extractor.FeatureExtractor()  # 此处全使用默认的文件路径配置

    data_list = data_extractor.load_data()
    # data_list = load_all_data()  # 道路操场数据混合
    print('the length of data_list : ', len(data_list))

    random.shuffle(data_list)
    batch_num = int(7 * len(data_list) / 10)
    train_data = data_list[0:batch_num]
    test_data = data_list[batch_num:]

    train_data_input = []
    train_data_label = []
    for item in train_data:
        train_data_input.append(item[0])
        train_data_label.append(item[1])

    test_data_input = []
    test_data_label = []
    for item in test_data:
        test_data_input.append(item[0])
        test_data_label.append(item[1])
    '''将距离分辨率改为6m'''
    train_data_input_n = []
    train_data_label_n = []
    for i in range(len(train_data_label)):
        input = decrease_range_resolution(train_data_input[i])
        label = decrease_range_resolution(train_data_label[i])
        train_data_input_n.append(input)
        train_data_label_n.append(label)

    test_data_input_n = []
    test_data_label_n = []
    for i in range(len(test_data_label)):
        input = decrease_range_resolution(test_data_input[i])
        label = decrease_range_resolution(test_data_label[i])
        test_data_input_n.append(input)
        test_data_label_n.append(label)

    input_data_tensor = torch.FloatTensor(train_data_input_n).cuda(0)
    label_data_tensor = torch.FloatTensor(train_data_label_n).cuda(0)

    # test_data, test_label_data = data_extractor.load_test_data()
    test_data_tensor = torch.FloatTensor(test_data_input_n).cuda(0)
    test_label_tensor = torch.FloatTensor(test_data_label_n).cuda(0)

    np.save('D:\home\zeewei\projects\\77GRadar\model\\bp\\test_data\\bp3.npy',
            test_data_input_n)
    np.save('D:\home\zeewei\projects\\77GRadar\model\\bp\\test_data\\bp3.npy',
            test_data_label_n)

    min_loss = 200
    # L = len(input_data)
    for i in range(300000):
        # loss_sum = 0

        prediction = model(input_data_tensor)
        loss = loss_fn(prediction, label_data_tensor)
        loss_sum = loss.data.cpu().numpy()
        loss.backward()
        optimizer.step()

        test_prediction = model(test_data_tensor)
        test_loss = loss_fn(test_prediction, test_label_tensor)
        test_loss = test_loss.data.cpu().numpy()

        if i % 50 == 0:

            if test_loss < min_loss:
                min_loss = test_loss
            if test_loss < 0.711:
                torch.save(model, MODEL_SAVE_DIR + 'bp2_' + str(i) + '.pkl')
            print(i, ' train_mean_loss: ', loss_sum, ' test_loss: ', test_loss,
                  ' min_test_loss: ', min_loss)

    print('test_min_loss: ', min_loss)

    torch.save(model, 'BP2_data_with_empty_loss.pkl')
Ejemplo n.º 7
0
Archivo: bp2.py Proyecto: wzce/77GRadar
def train_playground():
    model = Net().cuda(0)
    optimizer = torch.optim.Adam(model.parameters(), lr=LR)
    data_extractor = extractor.FeatureExtractor()  # 此处全使用默认的文件路径配置

    data_list = data_extractor.load_data()
    # data_list = load_all_data()  # 道路操场数据混合
    # print('the length of data_list : ', len(data_list))

    random.shuffle(data_list)
    batch_num = int(7 * len(data_list) / 10)
    train_data = data_list[0:batch_num]
    test_data = data_list[batch_num:]

    train_data_input = []
    train_data_label = []
    for item in train_data:
        train_data_input.append(item[0])
        train_data_label.append(item[1])

    test_data_input = []
    test_data_label = []
    for item in test_data:
        test_data_input.append(item[0])
        test_data_label.append(item[1])

    np.save('D:\home\zeewei\projects\\77GRadar\model\cnn\\test_data_pg\\input_data_bp2.npy', test_data_input)
    np.save('D:\home\zeewei\projects\\77GRadar\model\cnn\\test_data_pg\\label_data_bp2.npy', test_data_label)

    # test_batch_num = len(test_data_input)
    # test_data_input = np.array(test_data_input).reshape(test_batch_num, 1, 64)
    # test_data_label = np.array(test_data_label).reshape(test_batch_num, 1, 64)
    test_data_tensor = torch.FloatTensor(test_data_input).cuda(0)
    test_label_tensor = torch.FloatTensor(test_data_label).cuda(0)

    # train_data_input = np.array(train_data_input).reshape(batch_num, 1, 64)
    # train_data_label = np.array(train_data_label).reshape(batch_num, 1, 64)
    train_data_tensor = torch.FloatTensor(train_data_input).cuda(0)
    train_label_tensor = torch.FloatTensor(train_data_label).cuda(0)

    min_loss = 2
    for i in range(3000000):
        optimizer.zero_grad()
        prediction = model(train_data_tensor)
        loss = loss_fn(prediction, train_label_tensor)
        loss_val = loss.data.cpu().numpy()
        loss.backward()
        optimizer.step()

        test_prediction = model(test_data_tensor)
        test_loss = loss_fn(test_prediction, test_label_tensor)
        test_loss = test_loss.data.cpu().numpy()

        if i % 50 == 0:
            if test_loss < min_loss:
                min_loss = test_loss
            if test_loss < 0.6993:
                torch.save(model, MODEL_SAVE_DIR + 'bp2_pg_' + str(i) + '.pkl')
            print(i, ' train_mean_loss: ', loss_val,
                  ' test_loss: ', test_loss, 'min_loss: ', min_loss)
    print('test_min_loss: ', min_loss)