Ejemplo n.º 1
0
    def minibatch(self,
                  dataset,
                  subset,
                  use_datasets,
                  cache_data,
                  shift_ratio=-1):
        if shift_ratio < 0:
            shift_ratio = self.shift_ratio
        with tf.name_scope('batch_processing'):
            # Build final results per split.
            images = [[] for _ in range(self.num_splits)]
            labels = [[] for _ in range(self.num_splits)]
            if use_datasets:
                ds = data_utils.create_dataset(self.batch_size,
                                               self.num_splits,
                                               self.batch_size_per_split,
                                               self.parse_and_preprocess,
                                               dataset, subset, self.train,
                                               cache_data)
                ds_iterator = data_utils.create_iterator(ds)
                for d in xrange(self.num_splits):
                    labels[d], images[d] = ds_iterator.get_next()

            else:
                record_input = data_flow_ops.RecordInput(
                    file_pattern=dataset.tf_record_pattern(subset),
                    seed=301,
                    parallelism=64,
                    buffer_size=10000,
                    batch_size=self.batch_size,
                    shift_ratio=shift_ratio,
                    name='record_input')
                records = record_input.get_yield_op()
                records = tf.split(records, self.batch_size, 0)
                records = [tf.reshape(record, []) for record in records]
                for idx in xrange(self.batch_size):
                    value = records[idx]
                    (label, image) = self.parse_and_preprocess(value, idx)
                    split_index = idx % self.num_splits
                    labels[split_index].append(label)
                    images[split_index].append(image)

            for split_index in xrange(self.num_splits):
                if not use_datasets:
                    images[split_index] = tf.parallel_stack(
                        images[split_index])
                    labels[split_index] = tf.concat(labels[split_index], 0)
                images[split_index] = tf.reshape(images[split_index],
                                                 shape=[
                                                     self.batch_size_per_split,
                                                     self.height, self.width,
                                                     self.depth
                                                 ])
                labels[split_index] = tf.reshape(labels[split_index],
                                                 [self.batch_size_per_split])
            return images, labels
Ejemplo n.º 2
0
	def build_inputs(self):
		with tf.variable_scope('inputs'):

			print('Loading dataset...')
			self.dataset = data_utils.create_dataset(
				self.data_dir,
				self.batch_size,
				self.scale_dataset,
				self.crop_dataset
			)

			print('Dataset: {}'.format('SPACE'))
			print(' - size: {}'.format(self.dataset_size))
			print(' - channels: {}'.format(self.channels))

			self.data_iterator = self.dataset.make_one_shot_iterator()
			self.data_init_op = None

			self.real_images = self.data_iterator.get_next(
				name='real_images'
			)

			self.zc_vectors = tf.placeholder(
				tf.float32,
				[None, self.z_size],
				name='zc_vectors'
			)

			self.is_training = tf.placeholder_with_default(False, shape=[], name='is_training')

			self.global_step = tf.Variable(0, trainable=False, name='global_step')

			if self.regularizer_scale > 0.0:
				self.generator_regularizer = tf.contrib.layers.l2_regularizer(self.regularizer_scale)
				self.discriminator_regularizer = tf.contrib.layers.l2_regularizer(self.regularizer_scale)
				self.mutual_info_regularizer = tf.contrib.layers.l2_regularizer(self.regularizer_scale)
			else:
				self.generator_regularizer = None
				self.discriminator_regularizer = None
				self.mutual_info_regularizer = None
Ejemplo n.º 3
0
    batch_token_ids = []
    for i in range(0, len(X)):
        token_ids = X[i].tolist()
        segment_ids = [0 for token in X[i]]
        batch_token_ids.append(token_ids)
        batch_segment_ids.append(segment_ids)
    return [np.array(batch_token_ids), np.array(batch_segment_ids)]


model_path = "model_75_epochs_no_earlystopping.hd5"
print("Trained model path : %s" % model_path)
test_filename = "data/trial_data.txt"
print("Test dataset path : %s" % test_filename)
results_path = "data/res/submission.txt"
print("Results path : %s" % results_path)

# ALBERT predictions

print("\n === ALBERT predictions ===\n")

X_test, _, _ = create_dataset(test_filename)

model = load_model(model_path, custom_objects=get_custom_objects())
model.summary()
predictions = model.predict(data_creator(X_test))
word_id_lsts, post_lsts, _, _, _, _ = read_data(test_filename)
predictions_unpadded = unpad(np.array(predictions), word_id_lsts)

write_results(word_id_lsts, post_lsts, predictions_unpadded, results_path)
print("Results written")
Ejemplo n.º 4
0
if __name__=='__main__':

	args=parse_args()
	data_dir,model_net,dataset_name,batch=args.data_dir,args.model_net,args.dataset,args.batch
	#load dataset into data loader	
	logit_predicted_train=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_train.npy")).cuda()
	logit_predicted_valid=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_valid.npy")).cuda()
	logit_predicted_test=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_test.npy")).cuda()
	true_train=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_train.npy")).long().cuda()
	true_valid=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_valid.npy")).long().cuda()
	true_test=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_test.npy")).long().cuda()

	tr=[logit_predicted_train,logit_predicted_valid]
	te=[true_train,true_valid]
	dataset=[tr,te]
	trainLoader,validLoader=create_dataset(dataset,'FC',batch_size_tr=batch,batch_size_te=batch,tocuda=True)
	tr=[logit_predicted_train,logit_predicted_test]
	te=[true_train,true_test]
	dataset=[tr,te]
	_,testLoader=create_dataset(dataset,'FC',batch_size_tr=batch,batch_size_te=batch,tocuda=True)

	#networks
	if dataset_name in ['cifar10','svhn']:
		input_dim=10
	elif dataset_name=='cifar100':
		input_dim=100
	elif dataset_name in ['gender','vggface2']:
		input_dim=2
	elif dataset_name=='cars':
		input_dim=196
	elif dataset_name=='birds':
Ejemplo n.º 5
0
        lr_new=-(lr_init/epochs_N)*e+lr_init
        return lr_new

if __name__=='__main__':

	MC_samples,model_dir,data_dir,dataset_name,model_net,valid_test=parse_args()

	#load dataset into data loader
	logit_predicted_test=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_test.npy")).cuda()
	logit_predicted_valid=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_valid.npy")).cuda()
	true_test=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_test.npy")).long().cuda()
	true_valid=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_valid.npy")).long().cuda()
	tr=[logit_predicted_test,logit_predicted_valid]
	te=[true_test,true_valid]
	dataset=[tr,te]
	testLoader,validLoader=create_dataset(dataset,batch_size_tr=10000,batch_size_te=5000,tocuda=True)

	#networks
	variatonal = torch.load(model_dir+"models/"+"variatonal",map_location=lambda storage,loc:storage.cuda(0))
	reconstruction = torch.load(model_dir+"models/"+"reconstruction",map_location=lambda storage,loc:storage.cuda(0))
	q_m,q_logv=variatonal.forward()
 
	'''
	Measuring calibration
	'''
	n_bins=15
	if valid_test=='validation':
		#utilities
		CE=nn.functional.cross_entropy
		#before calibration
		avg_confidence_before_BNN_valid=average_confidence(logit_predicted_valid)*100
Ejemplo n.º 6
0
    if config.seed is not None:
        np.random.seed(config.seed)
        torch.manual_seed(config.seed)

    results_folder = os.path.join(
        config.results_folder, "_".join([
            datetime.datetime.now().strftime("%d-%m-%Y_%H-%M-%S"), config.model
        ]))
    os.mkdir(results_folder)
    print("Results will be saved here : " + str(results_folder))

    with open(os.path.join(results_folder, "config.yaml"), "w") as f:
        f.write(yaml.dump(config_yaml))

    train_dataset, val_dataset = create_dataset(config.file, config.train_per,
                                                1, config.step_size,
                                                config.data_transform,
                                                config.standardization)
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=config.batch_size,
                                  shuffle=True)
    val_dataloader = DataLoader(val_dataset,
                                batch_size=config.batch_size,
                                shuffle=False)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    from models.rnn.lstm import CNN_autoencoder
    model = CNN_autoencoder(config.step_size, config.embed_size).to(device)

    loss = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
Ejemplo n.º 7
0
                   "_logit_prediction_test.npy")).float().cuda()
    true_valid = torch.from_numpy(
        numpy.load(data_dir + model_net + "_" + dataset_name + '/' +
                   dataset_name + "_" + model_net +
                   "_true_valid.npy")).long().cuda()
    true_test = torch.from_numpy(
        numpy.load(data_dir + model_net + "_" + dataset_name + '/' +
                   dataset_name + "_" + model_net +
                   "_true_test.npy")).long().cuda()

    tr = [logit_predicted_valid, logit_predicted_test]
    te = [true_valid, true_test]
    dataset = [tr, te]
    trainLoader, validLoader = create_dataset(dataset,
                                              'FC',
                                              batch_size_tr=1000,
                                              batch_size_te=1000,
                                              tocuda=True)

    #networks
    if dataset_name in ['cifar10', 'svhn']:
        input_dim = 10
    elif dataset_name == 'cifar100':
        input_dim = 100
    elif dataset_name in ['gender', 'vggface2']:
        input_dim = 2
    elif dataset_name == 'cars':
        input_dim = 196
    elif dataset_name == 'birds':
        input_dim = 200
    else:
Ejemplo n.º 8
0
                       ], batch_labels, batch_weights
                batch_token_ids, batch_segment_ids, batch_labels, weights, batch_weights,labels = [], [], [], [], [], []


train_filename = "data/train.txt"
print("Data path : %s" % train_filename)
model_path = "model_100_epochs_batch64_earlystopping.hd5"
print("Trained model path : %s" % model_path)
config_path = "bert_base_cased/albert_config_base.json"
print("Config path : %s" % config_path)
checkpoint_path = "bert_base_cased/bert_model.ckpt"
print("Checkpoint path : %s\n" % checkpoint_path)

# Dataset generation
print(" === Dataset generation ===\n")
X_train, y_train, weights = create_dataset(train_filename)
maxlen = len(y_train[0])

#embedding_model = api.load("glove-twitter-25")

BATCH_SIZE = 64
INIT_LR = 10e-5
NB_EPOCHS = 100

# ALBERT model
print("\n === ALBERT model configuration ===\n")
bert = build_bert_model(config_path,
                        checkpoint_path,
                        with_pool=True,
                        albert=True,
                        return_keras_model=False)
Ejemplo n.º 9
0
                    'tf.Example protos for validation.')
parser.add_argument('w2v', help='The pre-trained word vector.')
parser.add_argument('vocab', help='The vocabulary file containing all words')
parser.add_argument('ckpt_dir',
                    help='Directory for saving and loading checkpoints.')
# parser.add_argument('model_dir', default='lstm_crf_tagger',
#                     help='Directory for saving and loading model.')
# parser.add_argument('model_version', default='0001',
#                     help='Version of saved model.')

args = parser.parse_args()

model_config = configuration.ModelConfig()
train_config = configuration.TrainingConfig()

train_dataset = data_utils.create_dataset(args.train_pattern,
                                          train_config.batch_size)
dev_dataset = data_utils.create_dataset(args.dev_pattern,
                                        train_config.batch_size)

vocab = data_utils.load_vocab(args.vocab)
w2v = data_utils.load_w2v(args.w2v, vocab)
embeddings = data_utils.load_vocab_embeddings(w2v, vocab, model_config.d_word)

tagger = model.Model(embeddings, len(vocab), model_config)

optimizer = tf.keras.optimizers.SGD(lr=train_config.learning_rate,
                                    clipvalue=train_config.clip_gradients)

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.Accuracy(name='train_accuracy')
train_metric = metrics.TaggerMetric(model_config.n_tags)
if __name__=='__main__':

	model_net,MC_samples,dkl_scale_factor,dkl_after_epoch,data_dir,dataset_name,save_after_epoch,epochs_t,lr_t,batch,anneal,folder_name,layer_dim,n_layers=parse_args()

	#load dataset into data loader	
	logit_predicted_train=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_train.npy")).cuda()
	logit_predicted_valid=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_valid.npy")).cuda()
	logit_predicted_test=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_logit_prediction_test.npy")).cuda()
	true_train=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_train.npy")).long().cuda()
	true_valid=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_valid.npy")).long().cuda()
	true_test=torch.from_numpy(numpy.load(data_dir+model_net+"_"+dataset_name+'/'+dataset_name+"_"+model_net+"_true_test.npy")).long().cuda()

	tr=[logit_predicted_train,logit_predicted_valid]
	te=[true_train,true_valid]
	dataset=[tr,te]
	trainLoader,testLoader=create_dataset(dataset,batch_size_tr=batch,batch_size_te=batch,tocuda=True)

	#networks

	if dataset_name in ['cifar10','svhn']:
		input_dim=10
	elif dataset_name=='cifar100':
		input_dim=100
	elif dataset_name in ['gender','vggface2']:
		input_dim=2
	elif dataset_name == 'cars':
		input_dim = 196
	elif dataset_name == 'birds':
		input_dim = 200
	else:
		raise NotImplemented
        np.random.seed(config.seed)

    results_folder = os.path.join(
        config.results_folder, "_".join([
            datetime.datetime.now().strftime("%d-%m-%Y_%H-%M-%S"), config.model
        ]))
    os.mkdir(results_folder)
    print("Results will be saved here : " + str(results_folder))

    with open(os.path.join(results_folder, "config.yaml"), "w") as f:
        f.write(yaml.dump(config_yaml))

    train_dataset, val_dataset = create_dataset(config.file,
                                                config.train_per,
                                                1,
                                                config.sample_size,
                                                config.data_transform,
                                                config.standardization,
                                                tensor=False)

    D0 = np.random.randn(train_dataset.shape[2], config.embed_size)

    opt = bpdndl.BPDNDictLearn.Options({
        'Verbose': False,
        'MaxMainIter': 100,
        'BPDN': {
            'rho': 10.0 * config.lambda_l + 0.1
        },
        'CMOD': {
            'rho': train_dataset.shape[0] / 1e3
        }