Ejemplo n.º 1
0
def processing_dir(dir_path1, dir_path2):
    # list_accepted = []
    list_dict = []
    element = ''
    for element in os.listdir(dir_path1):
        df1 = data_utils.load_var(join(dir_path1, element), '1')
        for element in os.listdir(dir_path2):
            df2 = data_utils.load_var(join(dir_path2, element), '2')
    print compare_two_dfs(df1, df2)
Ejemplo n.º 2
0
def __run_cell(cell, filename, t_rng, use_single_bc_comp=False):

    cell = deepcopy(cell)

    original_model_output = data_utils.load_var(filename)

    # Run with original stimulus.
    cell.set_stim(original_model_output['Stimulus'], stim_type='Light')
    if t_rng is None: t_rng = original_model_output['t_rng']
    cell.update_t_rng(t_rng)
    if use_single_bc_comp: cell.update_cpl(cpl=2, verbose=False)
    cell.predur = original_model_output['predur']
    print('Running with n_bc_comps =', cell.n_bc_comps)

    im = cell.init_retsim(verbose=False)

    plt.figure(figsize=(8, 8))
    plt.imshow(im)
    plt.show()

    try:
        rec_data, rec_time, rec_stim = cell.run(rec_type='test',
                                                plot=False,
                                                verbose=True,
                                                reset_retsim_stim=True)
    except KeyboardInterrupt:
        print("KeyboardInterrupt")
        rec_data, rec_time, rec_stim = None, None, None
    except Exception as e:
        print("Error in Simulation\n", e)
        rec_data, rec_time, rec_stim = None, None, None

    if rec_time is not None: rec_time += t_rng[0]

    return rec_data, rec_time, rec_stim, original_model_output
Ejemplo n.º 3
0
    def check_parameter_files(cell, params, folder):
        ''' Test if cell parameters are the same as they were in a previous run.
    This is crucial if you load the data.
    '''

        files_vs_dicts = {}
        files_vs_dicts['cell_params_default.pkl'] = cell.params_default
        files_vs_dicts['cell_params_unit.pkl'] = cell.params_unit
        files_vs_dicts['opt_p_range.pkl'] = params.p_range

        for file, param_dict in files_vs_dicts.items():

            src_file = os.path.join(folder, file)

            if os.path.isfile(src_file):
                loaded_dict = data_utils.load_var(src_file)

                for param_name, param_value in param_dict.items():

                    if param_name not in loaded_dict.keys():
                        print(param_name, 'not in loaded_dict params')

                    elif param_value != loaded_dict[param_name]:
                        print(param_name, ':', param_value, '!= ',
                              loaded_dict[param_name])

                        input("Params in " + file +
                              " are different. Press Enter to overwrite ... ")

            data_utils.save_var(param_dict, src_file)

        # If p_range was fine, p_names is fine too.
        data_utils.save_var(params.p_names,
                            os.path.join(folder, 'opt_p_names.pkl'))
Ejemplo n.º 4
0
    def load_init_data(self, dirname):
        ''' Load pilot run, i.e. initial data.
    '''
        self.cell.load_init_data(os.path.join('optim_data', dirname))
        self.rec_data = data_utils.load_var(
            os.path.join('optim_data', dirname, 'init_rec_data.pkl'))
        assert self.rec_data is not None

        if self.loss is not None:
            self.loss.update_target(rec_time=self.get_rec_time())
Ejemplo n.º 5
0
    def load_acc_sols_from_file(self):
        """Load acc sols from. Handle with care, as there are no checks"""
        folder = f'{self.base_folder}'
        if self.subfoldername is not None: folder += f'/{self.subfoldername}'

        filename = f"{folder}/acc_sols.pkl"

        if data_utils.file_exists(filename):
            self.acc_sols = data_utils.load_var(filename)
        else:
            print('Not acc sols file found!')
            self.acc_sols = []
Ejemplo n.º 6
0
def gen_or_load_samples(optim, opt_params, filename, load):
    if load:
        assert os.path.isfile(filename), 'File does not exist'
        model_output_list = data_utils.load_var(filename)
    else:
        optim.init_rec_data(allow_loading=False,
                            force_loading=True,
                            verbose=True)
        model_output_list = optim.run_parallel(opt_params_list=opt_params,
                                               verbose=True)
        data_utils.save_var(model_output_list, filename)

    if load:
        assert len(model_output_list) == opt_params.shape[
            0], 'Loaded sample size differs from requested'

    return model_output_list
Ejemplo n.º 7
0
    def load_samples(self, file=None, verbose=False):
        ''' Load samples from file.
    '''
        if file is None: file = self.optim_data_file

        optim_data = None

        if os.path.exists(file):
            if os.stat(file).st_size != 0:
                optim_data = data_utils.load_var(file)
                if verbose:
                    print('Loaded file', file, '-> n_samples =',
                          optim_data['loss']['total'].size)
        else:
            if verbose: print('File', file, 'does not exist!')

        return optim_data
Ejemplo n.º 8
0
  def load_tds_from_file(self, file, params):
    ''' Load training data to pass it to SNPE.
    Importance weights will be recomputed.
    '''
  
    print(file)
    loaded_samples = data_utils.load_var(file)
    
    if 'wall-time' in loaded_samples.keys():
      n_loaded_samples = loaded_samples['wall-time'].size
    elif 'loss' in loaded_samples.keys():
      n_loaded_samples = loaded_samples['loss']['total'].size
    else:
      raise NotImplementedError
      
    print('Loaded', n_loaded_samples, 'samples from', file)
    
    loss_names = loaded_samples['loss'].keys()
    tds_loss = []
    for i in range(n_loaded_samples):
      sample_loss_dict = {}
      for loss_name in loss_names:
        sample_loss_dict[loss_name] = loaded_samples['loss'][loss_name][i]
      tds_loss.append(self.to_network_input(sample_loss_dict))
    tds_loss = np.array(tds_loss)

    if tds_loss.ndim == 1: tds_loss = np.atleast_2d(tds_loss).T

    if isinstance(loaded_samples['params'], dict):
      n_params = len(loaded_samples['params'])
    else:
      n_params = loaded_samples['params'].shape[1]
    
    assert n_params == params.p_N
    
    tds_params = np.zeros((n_loaded_samples, n_params))
    
    if isinstance(loaded_samples['params'], dict):
      for idx, param in enumerate(params.p_names):
        tds_params[:,idx] = params.sim_param2opt_param(loaded_samples['params'][param], param)
    else:
      tds_params = loaded_samples['params']
      
    loaded_tds = (tds_params, tds_loss, None)
    return loaded_tds, n_loaded_samples
Ejemplo n.º 9
0
    def load_data(
        self,
        method,
        adaptive,
        step_param,
        pert_method,
        pert_param='auto',
        filename=None,
    ):
        """Load data without checking it"""
        if filename is None:
            filename = self.get_data_folder_and_filename(
                method=method,
                adaptive=adaptive,
                step_param=step_param,
                pert_method=pert_method,
                pert_param=pert_param)[1]

        data = data_utils.load_var(filename)

        return data
Ejemplo n.º 10
0
    def read_var(self, csv_path=None):
        """
        This function reads a csv file

        Parameters
        ----------
        csv_path : {string type}
                    Path to the csv file

        Return
        ------
        df : {Pandas dataframe}
             The dataframe of the csv file with a sorted time index

        """
        if csv_path is None:
            csv_path = self.get_param('path')
        var_name = self.get_param('var_name')

        df = data_utils.load_var(path=csv_path, var_name=var_name)
        return df
Ejemplo n.º 11
0
  def load_SNPE_rounds(self):
    ''' Load stored rounds of SNPE.
    '''

    inf_snpes            = data_utils.load_var(os.path.join(self.snpe_folder, 'inf_snpes.pkl'))
    logs                 = data_utils.load_var(os.path.join(self.snpe_folder, 'logs.pkl'))
    tds                  = data_utils.load_var(os.path.join(self.snpe_folder, 'tds.pkl'))
    sample_distributions = data_utils.load_var(os.path.join(self.snpe_folder, 'sample_distributions.pkl'))
    n_samples            = data_utils.load_var(os.path.join(self.snpe_folder, 'n_samples.pkl'))
      
    if self.snpe_type in ['b', 'B']:
      kernel_bandwidths = data_utils.load_var(os.path.join(self.snpe_folder, 'kernel_bandwidths.pkl'))
      pseudo_obs        = data_utils.load_var(os.path.join(self.snpe_folder, 'pseudo_obs.pkl'))
    else:
      kernel_bandwidths = None
      pseudo_obs = None
    
    print('Loaded {:d} rounds'.format(len(n_samples)))
    
    return inf_snpes, logs, tds, sample_distributions, n_samples, kernel_bandwidths, pseudo_obs
Ejemplo n.º 12
0
# -*- coding: utf-8 -*-

import data_utils
import matplotlib.pyplot as plt

# df1 = data_utils.load_var('2 Data/1 Received/Market data/Base/XAU_Curncy_LAST_PRICE.csv')  # commo_gold
# df1 = data_utils.load_var('2 Data/2 Calculs/18 06 Derived/I/STR_USD_1M.csv')  # str_usd_1m

# df1 = data_utils.load_var('usd_eur.csv')
df1 = data_utils.load_var('usd_eur_nan.csv')

plt.grid()
# plt.plot(df1, "r")
plt.plot(df1, 'r')
plt.show()
plt.figure()
Ejemplo n.º 13
0
        df1 = data_utils.load_var(join(dir_path1, element), '1')
        for element in os.listdir(dir_path2):
            df2 = data_utils.load_var(join(dir_path2, element), '2')
    print compare_two_dfs(df1, df2)


dir_path1 = 'I06'
dir_path2 = 'I04'
i = 0
j = 0
for element1 in os.listdir(dir_path1):
    for element2 in os.listdir(dir_path2):
        if element1 == element2:
            j += 1
            csv_path = dir_path1 + '/' + element1
            df_base = data_utils.load_var(csv_path, 'x')
            # df_base.columns = [x.lower() for x in df_base.columns]
            csv_path = dir_path2 + '/' + element2
            df_latest = data_utils.load_var(csv_path, 'y')
            dfs = [df_latest, df_base]

            if df_base.equals(df_latest):
                print(element1)
            else:
                i += 1
                print(element1, element2)
                print(compare_two_dfs(df_base, df_latest))
print(i)
print(j)
df_latest.sort_index(ascending=True, inplace=True)
df_latest.columns = [x.lower() for x in df_latest.columns]
Ejemplo n.º 14
0
    'j': ['ABPD4', 'LP2', 'PY1'],
}

n3_panel2syngs = {  # [nS]
    'a': np.array([10, 100, 10, 3, 30, 1, 3]),
    'b': np.array([3, 0, 0, 30, 3, 3, 0]),
    'c': np.array([100, 0, 30, 1, 0, 3, 0]),
    'd': np.array([3, 100, 10, 1, 10, 3, 10]),
    'e': np.array([30, 30, 10, 3, 30, 1, 30]),

    'f': np.array([3, 100, 10, 1, 10, 3, 10]), # f-j are the same
    'g': np.array([3, 100, 10, 1, 10, 3, 10]),
    'h': np.array([3, 100, 10, 1, 10, 3, 10]),
    'i': np.array([3, 100, 10, 1, 10, 3, 10]),
    'j': np.array([3, 100, 10, 1, 10, 3, 10]),
}

n3_isslow_list = [0, 1, 0, 1, 0, 0, 0]

__filename = f'{Path(__file__).parent.absolute()}/stg_neuron2y0.pkl'
try:
    neuron2y0 = data_utils.load_var(__filename)
except:
    print(f'Could not initialize {__filename}.')

__filename = f'{Path(__file__).parent.absolute()}/stg_n3_panel2y0.pkl'
try:
    n3_panel2y0 = data_utils.load_var(__filename)
except:
    print(f'Could not initialize {__filename}.')
Ejemplo n.º 15
0
from __future__ import division
import numpy as np
import data_utils
import pandas as pd
from dateutil import parser
#import control_var as cv
from matplotlib import pyplot
import control_utils
# Librairies

import logging
from var_logger import setup_logging

setup_logging()
logger = logging.getLogger(__name__)
logger.debug('Logger for class ')
logger.setLevel('DEBUG')

# print df
# df.plot()
# pyplot.show()

df = data_utils.load_var('STR_USD_3M_DACE_1_20_100.csv', 'GOV_JPN_1Y_Z250D')
Ejemplo n.º 16
0
# -*- coding: utf-8 -*-

import data_utils

print data_utils.load_var(
    '2 Data/2 Calculs/18 06 Derived/I/FUT_SP500_C1_RET1D.csv')  # rollingreturn

print data_utils.load_var(
    '2 Data/2 Calculs/18 06 Derived/I/FUT_BUND_RET1ROLL.csv')  # futuresroll
print data_utils.load_var(
    '2 Data/2 Calculs/18 06 Derived/I/FUT_NKY_RET1_STD50.csv')  # vol

path = '2 Data/2 Calculs/18 06 Derived/I/FUT_BUND_RET1ROLL.csv'  # futuresroll
print data_utils.load_var(path)
Ejemplo n.º 17
0
# coding: utf-8

from __future__ import division

import data_utils
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from os.path import basename, splitext

path = 'GOV_JPN_1Y_Z250D.csv'
var_name = splitext(path)[0]

# read csv file
df = data_utils.load_var(path, var_name)
df.plot()
plt.show()


def zero_cross(arr):
    neg_pos = ((arr[:-1] * arr[1:]) < 0).sum()
    # zcr = (1/T)*sum((s(t)*(st-1) < 0))
    zcr = neg_pos / len(arr)
    return zcr


# print zero_cross()
print zero_cross(df.values)
 def load_init_data(self, dirname):
     for cell in self.cells:
         cell.load_init_data('optim_data/' + dirname + '/' + cell.bp_type)
     self.rec_data = data_utils.load_var('optim_data/' + dirname +
                                         '/init_rec_data.pkl')
     assert self.rec_data is not None
Ejemplo n.º 19
0
 def load_random_state(self):
   ''' Load numpy random state from folder.
   '''
   np.random.set_state(data_utils.load_var(os.path.join(self.general_folder, 'random_state.pkl')))