Ejemplo n.º 1
0
def run_epoch(session, m, names, counts, epoch_size, eval_op, verbose=False):
    """Runs the model on the given data for one epoch

    Args:
        session: the tf session holding the model graph
        m: an instance of the NamignizerModel
        names: a set of lowercase names of 26 characters
        counts: a list of the frequency of the above names
        epoch_size: the number of batches to run
        eval_op: whether to change the params or not, and how to do it
    Kwargs:
        verbose: whether to print out state of training during the epoch
    Returns:
        cost: the average cost during the last stage of the epoch
    """
    start_time = time.time()
    costs = 0.0
    iters = 0
    for step, (x, y) in enumerate(
            data_utils.namignizer_iterator(names, counts, m.batch_size,
                                           m.num_steps, epoch_size)):

        cost, _ = session.run(
            [m.cost, eval_op], {
                m.input_data: x,
                m.targets: y,
                m.weights: np.ones(m.batch_size * m.num_steps)
            })
        costs += cost
        iters += m.num_steps

        if verbose and step % (epoch_size // 10) == 9:
            print("%.3f perplexity: %.3f speed: %.0f lps" %
                  (step * 1.0 / epoch_size, np.exp(costs / iters),
                   iters * m.batch_size / (time.time() - start_time)))

        if step >= epoch_size:
            break

    return np.exp(costs / iters)
Ejemplo n.º 2
0
def run_epoch(session, m, names, counts, epoch_size, eval_op, verbose=False):
    """Runs the model on the given data for one epoch

    Args:
        session: the tf session holding the model graph
        m: an instance of the NamignizerModel
        names: a set of lowercase names of 26 characters
        counts: a list of the frequency of the above names
        epoch_size: the number of batches to run
        eval_op: whether to change the params or not, and how to do it
    Kwargs:
        verbose: whether to print out state of training during the epoch
    Returns:
        cost: the average cost during the last stage of the epoch
    """
    start_time = time.time()
    costs = 0.0
    iters = 0
    for step, (x, y) in enumerate(data_utils.namignizer_iterator(names, counts,
                                                                 m.batch_size, m.num_steps, epoch_size)):

        cost, _ = session.run([m.cost, eval_op],
                              {m.input_data: x,
                               m.targets: y,
                               m.initial_state: m.initial_state.eval(),
                               m.weights: np.ones(m.batch_size * m.num_steps)})
        costs += cost
        iters += m.num_steps

        if verbose and step % (epoch_size // 10) == 9:
            print("%.3f perplexity: %.3f speed: %.0f lps" %
                  (step * 1.0 / epoch_size, np.exp(costs / iters),
                   iters * m.batch_size / (time.time() - start_time)))

        if step >= epoch_size:
            break

    return np.exp(costs / iters)