Ejemplo n.º 1
0
def preprocess_image(anno, H):
    image = imread(anno.imageName)
    # skip greyscale images
    if len(image.shape) < 3:
        return []

    # 4 channels images check
    if image.shape[2] == 4:
        image = image[:, :, :3]

    if 'rotate90' in H['data'] and H['data']['rotate90']:
        image, anno = Rotate90.do(image, anno)

    if image.shape[0] != H["image_height"] or image.shape[1] != H[
            "image_width"]:
        anno = rescale_boxes(image.shape, anno, H["image_height"],
                             H["image_width"])
        image = imresize(image, (H["image_height"], H["image_width"]),
                         interp='cubic')

    result = [(image, anno)]
    if 'augmentations' in H['data']:
        new_res = []
        for i, a in result:
            augmented = Augmentations(H['data']).process(i, a)
            new_res.append(augmented)
        result = new_res
    return result
Ejemplo n.º 2
0
def rect_predict(image_path, parameters, to_json, H, options):
    orig_img = imread(image_path)[:, :, :3]
    img = Rotate90.do(
        orig_img
    )[0] if 'rotate90' in H['data'] and H['data']['rotate90'] else orig_img
    img = imresize(img, (H['image_height'], H['image_width']), interp='cubic')
    np_pred_boxes, np_pred_confidences = parameters['sess']. \
        run([parameters['pred_boxes'], parameters['pred_confidences']], feed_dict={parameters['x_in']: img})

    image_info = {
        'path': image_path,
        'original_shape': img.shape[:2],
        'transformed': img
    }
    pred_anno = postprocess_regular(image_info, np_pred_boxes,
                                    np_pred_confidences, H, options)

    ret_list = [{
        'x1': r.x1,
        'x2': r.x2,
        'y1': r.y1,
        'y2': r.y2,
    } for r in pred_anno]

    return ret_list
def preprocess_image(anno, H):
    image = imread(anno.imageName)
    # skip greyscale images
    if len(image.shape) < 3:
        return []

    if 'rotate90' in H['data'] and H['data']['rotate90']:
        image, anno = Rotate90.do(image, anno)
    result = [(image, anno)]
    if 'augmentations' in H['data']:
        new_res = []
        for i, a in result:
            augmented = Augmentations(H['data']).process(i, a)
            new_res.append(augmented)
        result = new_res
    return result
Ejemplo n.º 4
0
def sliding_predict(image_path, parameters, to_json, H, options):
    orig_img = imread(image_path)[:, :, :3]
    height, width, _ = orig_img.shape
    if options.get('verbose', False):
        print(width, height)

    sl_win_options = H['sliding_predict']
    assert (sl_win_options['window_height'] > sl_win_options['overlap'])
    slides = propose_slides(height, sl_win_options['window_height'],
                            sl_win_options['overlap'])

    result = []
    for top, bottom in slides:
        bottom = min(height, top + sl_win_options['window_height'])
        if options.get('verbose', False):
            print('Slide: ', 0, top, width, bottom)

        img = orig_img[top:bottom, 0:width]
        img = Rotate90.do(
            img
        )[0] if 'rotate90' in H['data'] and H['data']['rotate90'] else img
        img = imresize(img, (H['image_height'], H['image_width']),
                       interp='cubic')

        np_pred_boxes, np_pred_confidences = parameters['sess']. \
            run([parameters['pred_boxes'], parameters['pred_confidences']], feed_dict={parameters['x_in']: img})
        image_info = {
            'path': image_path,
            'original_shape': (bottom - top, width),
            'transformed': img,
            'a': orig_img[top:bottom, 0:width]
        }

        pred_boxes = postprocess_regular(image_info, np_pred_boxes,
                                         np_pred_confidences, H, options)
        shift_boxes(pred_boxes, top)
        result.extend(pred_boxes)

    result = combine_boxes(result, sl_win_options['iou_min'],
                           sl_win_options['nms'])
    result = [r.writeJSON() for r in result] if to_json else result
    return result