def run_cross_validation(self, job):
        """ Cross file validation job. Test all rules with matching rule_timing.
            Run each cross-file rule and create error report.

            Args:
                job: Current job
        """
        sess = GlobalDB.db().session
        job_id = job.job_id
        # Create File Status object
        create_file_if_needed(job_id)
        # Create list of errors
        error_list = ErrorInterface()

        submission_id = job.submission_id
        job_start = datetime.now()
        logger.info({
            'message':
            'Beginning cross-file validations on submission_id: ' +
            str(submission_id),
            'message_type':
            'ValidatorInfo',
            'submission_id':
            submission_id,
            'job_id':
            job.job_id,
            'action':
            'run_cross_validations',
            'start':
            job_start,
            'status':
            'start'
        })
        # Delete existing cross file errors for this submission
        sess.query(ErrorMetadata).filter(
            ErrorMetadata.job_id == job_id).delete()
        sess.commit()

        # get all cross file rules from db
        cross_file_rules = sess.query(RuleSql).filter_by(
            rule_cross_file_flag=True)

        # for each cross-file combo, run associated rules and create error report
        for c in get_cross_file_pairs():
            first_file = c[0]
            second_file = c[1]
            combo_rules = cross_file_rules.filter(
                or_(
                    and_(RuleSql.file_id == first_file.id,
                         RuleSql.target_file_id == second_file.id),
                    and_(RuleSql.file_id == second_file.id,
                         RuleSql.target_file_id == first_file.id)))

            # get error file name/path
            error_file_name = report_file_name(submission_id, False,
                                               first_file.name,
                                               second_file.name)
            error_file_path = "".join(
                [CONFIG_SERVICES['error_report_path'], error_file_name])
            warning_file_name = report_file_name(submission_id, True,
                                                 first_file.name,
                                                 second_file.name)
            warning_file_path = "".join(
                [CONFIG_SERVICES['error_report_path'], warning_file_name])

            # open error report and gather failed rules within it
            with open(error_file_path, 'w', newline='') as error_file,\
                    open(warning_file_path, 'w', newline='') as warning_file:
                error_csv = csv.writer(error_file,
                                       delimiter=',',
                                       quoting=csv.QUOTE_MINIMAL,
                                       lineterminator='\n')
                warning_csv = csv.writer(warning_file,
                                         delimiter=',',
                                         quoting=csv.QUOTE_MINIMAL,
                                         lineterminator='\n')

                # write headers to file
                error_csv.writerow(self.crossFileReportHeaders)
                warning_csv.writerow(self.crossFileReportHeaders)

                # send comboRules to validator.crossValidate sql
                current_cols_short_to_long = self.short_to_long_dict[
                    first_file.id].copy()
                current_cols_short_to_long.update(
                    self.short_to_long_dict[second_file.id].copy())
                cross_validate_sql(combo_rules.all(), submission_id,
                                   current_cols_short_to_long, first_file.id,
                                   second_file.id, job, error_csv, warning_csv,
                                   error_list, job_id)
            # close files
            error_file.close()
            warning_file.close()

            # stream file to S3 when not local
            if not self.is_local:
                # stream error file
                with open(error_file_path, 'rb') as csv_file:
                    with smart_open.smart_open(
                            S3Handler.create_file_path(
                                self.get_file_name(error_file_name)),
                            'w') as writer:
                        while True:
                            chunk = csv_file.read(CHUNK_SIZE)
                            if chunk:
                                writer.write(chunk)
                            else:
                                break
                csv_file.close()
                os.remove(error_file_path)

                # stream warning file
                with open(warning_file_path, 'rb') as warning_csv_file:
                    with smart_open.smart_open(
                            S3Handler.create_file_path(
                                self.get_file_name(warning_file_name)),
                            'w') as warning_writer:
                        while True:
                            chunk = warning_csv_file.read(CHUNK_SIZE)
                            if chunk:
                                warning_writer.write(chunk)
                            else:
                                break
                warning_csv_file.close()
                os.remove(warning_file_path)

        # write all recorded errors to database
        error_list.write_all_row_errors(job_id)
        # Update error info for submission
        populate_job_error_info(job)

        # mark job status as "finished"
        mark_job_status(job_id, "finished")
        job_duration = (datetime.now() - job_start).total_seconds()
        logger.info({
            'message':
            'Completed cross-file validations on submission_id: ' +
            str(submission_id),
            'message_type':
            'ValidatorInfo',
            'submission_id':
            submission_id,
            'job_id':
            job.job_id,
            'action':
            'run_cross_validations',
            'status':
            'finish',
            'start':
            job_start,
            'duration':
            job_duration
        })
        # set number of errors and warnings for submission.
        submission = populate_submission_error_info(submission_id)
        # TODO: Remove temporary step below
        # Temporarily set publishable flag at end of cross file, remove this once users are able to mark their
        # submissions as publishable
        # Publish only if no errors are present
        if submission.number_of_errors == 0:
            submission.publishable = True
        sess.commit()

        # Mark validation complete
        mark_file_complete(job_id)
    def run_validation(self, job):
        """ Run validations for specified job
        Args:
            job: Job to be validated
        Returns:
            True if successful
        """

        sess = GlobalDB.db().session
        error_list = ErrorInterface()
        job_id = job.job_id
        submission_id = job.submission_id

        row_number = 1
        file_type = job.file_type.name
        validation_start = datetime.now()

        log_str = 'on submission_id: {}, job_id: {}, file_type: {}'.format(
            str(submission_id), str(job_id), file_type)
        logger.info({
            'message': 'Beginning run_validation {}'.format(log_str),
            'message_type': 'ValidatorInfo',
            'submission_id': submission_id,
            'job_id': job_id,
            'file_type': file_type,
            'action': 'run_validations',
            'status': 'start',
            'start_time': validation_start
        })
        # Get orm model for this file
        model = [ft.model for ft in FILE_TYPE if ft.name == file_type][0]

        # Delete existing file level errors for this submission
        sess.query(ErrorMetadata).filter(
            ErrorMetadata.job_id == job_id).delete()
        sess.commit()

        # Clear existing records for this submission
        sess.query(model).filter_by(submission_id=submission_id).delete()
        sess.commit()

        # Clear existing flex fields for this job
        sess.query(FlexField).filter_by(job_id=job_id).delete()
        sess.commit()

        # If local, make the error report directory
        if self.is_local and not os.path.exists(self.directory):
            os.makedirs(self.directory)
        # Get bucket name and file name
        file_name = job.filename
        bucket_name = CONFIG_BROKER['aws_bucket']
        region_name = CONFIG_BROKER['aws_region']

        error_file_name = report_file_name(job.submission_id, False,
                                           job.file_type.name)
        error_file_path = "".join(
            [CONFIG_SERVICES['error_report_path'], error_file_name])
        warning_file_name = report_file_name(job.submission_id, True,
                                             job.file_type.name)
        warning_file_path = "".join(
            [CONFIG_SERVICES['error_report_path'], warning_file_name])

        # Create File Status object
        create_file_if_needed(job_id, file_name)

        reader = CsvReader()

        # Get file size and write to jobs table
        if CONFIG_BROKER["use_aws"]:
            file_size = S3Handler.get_file_size(file_name)
        else:
            file_size = os.path.getsize(file_name)
        job.file_size = file_size
        sess.commit()

        # Get fields for this file
        fields = sess.query(FileColumn).filter(
            FileColumn.file_id == FILE_TYPE_DICT[file_type]).all()

        for field in fields:
            sess.expunge(field)

        csv_schema = {row.name_short: row for row in fields}

        try:
            extension = os.path.splitext(file_name)[1]
            if not extension or extension.lower() not in ['.csv', '.txt']:
                raise ResponseException("", StatusCode.CLIENT_ERROR, None,
                                        ValidationError.fileTypeError)

            # Count file rows: throws a File Level Error for non-UTF8 characters
            temp_file = open(reader.get_filename(region_name, bucket_name,
                                                 file_name),
                             encoding='utf-8')
            file_row_count = len(list(csv.reader(temp_file)))
            try:
                temp_file.close()
            except AttributeError:
                # File does not exist, and so does not need to be closed
                pass

            # Pull file and return info on whether it's using short or long col headers
            reader.open_file(region_name,
                             bucket_name,
                             file_name,
                             fields,
                             bucket_name,
                             self.get_file_name(error_file_name),
                             self.long_to_short_dict[job.file_type_id],
                             is_local=self.is_local)

            # list to keep track of rows that fail validations
            error_rows = []

            # While not done, pull one row and put it into staging table if it passes
            # the Validator

            loading_start = datetime.now()
            logger.info({
                'message': 'Beginning data loading {}'.format(log_str),
                'message_type': 'ValidatorInfo',
                'submission_id': submission_id,
                'job_id': job_id,
                'file_type': file_type,
                'action': 'data_loading',
                'status': 'start',
                'start_time': loading_start
            })

            with open(error_file_path, 'w', newline='') as error_file,\
                    open(warning_file_path, 'w', newline='') as warning_file:
                error_csv = csv.writer(error_file,
                                       delimiter=',',
                                       quoting=csv.QUOTE_MINIMAL,
                                       lineterminator='\n')
                warning_csv = csv.writer(warning_file,
                                         delimiter=',',
                                         quoting=csv.QUOTE_MINIMAL,
                                         lineterminator='\n')

                required_list = None
                type_list = None
                if file_type == "fabs":
                    # create a list of all required/type labels for FABS
                    labels = sess.query(ValidationLabel).all()
                    required_list = {}
                    type_list = {}
                    for label in labels:
                        if label.label_type == "requirement":
                            required_list[label.column_name] = label.label
                        else:
                            type_list[label.column_name] = label.label

                # write headers to file
                error_csv.writerow(self.reportHeaders)
                warning_csv.writerow(self.reportHeaders)
                while not reader.is_finished:
                    row_number += 1

                    if row_number % 100 == 0:
                        elapsed_time = (datetime.now() -
                                        loading_start).total_seconds()
                        logger.info({
                            'message':
                            'Loading row: {} {}'.format(
                                str(row_number), log_str),
                            'message_type':
                            'ValidatorInfo',
                            'submission_id':
                            submission_id,
                            'job_id':
                            job_id,
                            'file_type':
                            file_type,
                            'action':
                            'data_loading',
                            'status':
                            'loading',
                            'rows_loaded':
                            row_number,
                            'start_time':
                            loading_start,
                            'elapsed_time':
                            elapsed_time
                        })
                    #
                    # first phase of validations: read record and record a
                    # formatting error if there's a problem
                    #
                    (record, reduceRow, skip_row, doneReading, rowErrorHere, flex_cols) = \
                        self.read_record(reader, error_csv, row_number, job, fields, error_list)
                    if reduceRow:
                        row_number -= 1
                    if rowErrorHere:
                        error_rows.append(row_number)
                    if doneReading:
                        # Stop reading from input file
                        break
                    elif skip_row:
                        # Do not write this row to staging, but continue processing future rows
                        continue

                    #
                    # second phase of validations: do basic schema checks
                    # (e.g., require fields, field length, data type)
                    #
                    # D files are obtained from upstream systems (ASP and FPDS) that perform their own basic
                    # validations, so these validations are not repeated here
                    if file_type in ["award", "award_procurement"]:
                        # Skip basic validations for D files, set as valid to trigger write to staging
                        passed_validations = True
                        valid = True
                    else:
                        if file_type == "fabs":
                            record['afa_generated_unique'] = (record['award_modification_amendme'] or '-none-') + "_" +\
                                                             (record['awarding_sub_tier_agency_c'] or '-none-') + \
                                                             "_" + (record['fain'] or '-none-') + "_" + \
                                                             (record['uri'] or '-none-')
                        passed_validations, failures, valid = Validator.validate(
                            record, csv_schema, file_type == "fabs",
                            required_list, type_list)
                    if valid:
                        # todo: update this logic later when we have actual validations
                        if file_type == "fabs":
                            record["is_valid"] = True

                        model_instance = model(job_id=job_id,
                                               submission_id=submission_id,
                                               valid_record=passed_validations,
                                               **record)
                        skip_row = not insert_staging_model(
                            model_instance, job, error_csv, error_list)
                        if flex_cols:
                            sess.add_all(flex_cols)
                            sess.commit()

                        if skip_row:
                            error_rows.append(row_number)
                            continue

                    if not passed_validations:
                        fatal = write_errors(
                            failures, job,
                            self.short_to_long_dict[job.file_type_id],
                            error_csv, warning_csv, row_number, error_list,
                            flex_cols)
                        if fatal:
                            error_rows.append(row_number)

                loading_duration = (datetime.now() -
                                    loading_start).total_seconds()
                logger.info({
                    'message':
                    'Completed data loading {}'.format(log_str),
                    'message_type':
                    'ValidatorInfo',
                    'submission_id':
                    submission_id,
                    'job_id':
                    job_id,
                    'file_type':
                    file_type,
                    'action':
                    'data_loading',
                    'status':
                    'finish',
                    'start_time':
                    loading_start,
                    'end_time':
                    datetime.now(),
                    'duration':
                    loading_duration,
                    'total_rows':
                    row_number
                })

                if file_type in ('appropriations', 'program_activity',
                                 'award_financial'):
                    update_tas_ids(model, submission_id)
                #
                # third phase of validations: run validation rules as specified
                # in the schema guidance. these validations are sql-based.
                #
                sql_error_rows = self.run_sql_validations(
                    job, file_type, self.short_to_long_dict[job.file_type_id],
                    error_csv, warning_csv, row_number, error_list)
                error_rows.extend(sql_error_rows)
            error_file.close()
            warning_file.close()

            # stream file to S3 when not local
            if not self.is_local:
                # stream error file
                with open(error_file_path, 'rb') as csv_file:
                    with smart_open.smart_open(S3Handler.create_file_path(self.get_file_name(error_file_name)), 'w')\
                            as writer:
                        while True:
                            chunk = csv_file.read(CHUNK_SIZE)
                            if chunk:
                                writer.write(chunk)
                            else:
                                break
                csv_file.close()
                os.remove(error_file_path)

                # stream warning file
                with open(warning_file_path, 'rb') as warning_csv_file:
                    with smart_open.smart_open(S3Handler.create_file_path(self.get_file_name(warning_file_name)), 'w')\
                            as warning_writer:
                        while True:
                            chunk = warning_csv_file.read(CHUNK_SIZE)
                            if chunk:
                                warning_writer.write(chunk)
                            else:
                                break
                warning_csv_file.close()
                os.remove(warning_file_path)

            # Calculate total number of rows in file
            # that passed validations
            error_rows_unique = set(error_rows)
            total_rows_excluding_header = row_number - 1
            valid_rows = total_rows_excluding_header - len(error_rows_unique)

            # Update fabs is_valid rows where applicable
            # Update submission to include action dates where applicable
            if file_type == "fabs":
                sess.query(DetachedAwardFinancialAssistance).\
                    filter(DetachedAwardFinancialAssistance.row_number.in_(error_rows_unique),
                           DetachedAwardFinancialAssistance.submission_id == submission_id).\
                    update({"is_valid": False}, synchronize_session=False)
                sess.commit()
                min_action_date, max_action_date = get_action_dates(
                    submission_id)
                sess.query(Submission).filter(Submission.submission_id == submission_id).\
                    update({"reporting_start_date": min_action_date, "reporting_end_date": max_action_date},
                           synchronize_session=False)

            # Ensure validated rows match initial row count
            if file_row_count != row_number:
                raise ResponseException("", StatusCode.CLIENT_ERROR, None,
                                        ValidationError.rowCountError)

            # Update job metadata
            job.number_of_rows = row_number
            job.number_of_rows_valid = valid_rows
            sess.commit()

            error_list.write_all_row_errors(job_id)
            # Update error info for submission
            populate_job_error_info(job)

            if file_type == "fabs":
                # set number of errors and warnings for detached submission
                populate_submission_error_info(submission_id)

            # Mark validation as finished in job tracker
            mark_job_status(job_id, "finished")
            mark_file_complete(job_id, file_name)
        finally:
            # Ensure the files always close
            reader.close()

            validation_duration = (datetime.now() -
                                   validation_start).total_seconds()
            logger.info({
                'message':
                'Completed run_validation {}'.format(log_str),
                'message_type':
                'ValidatorInfo',
                'submission_id':
                submission_id,
                'job_id':
                job_id,
                'file_type':
                file_type,
                'action':
                'run_validation',
                'status':
                'finish',
                'start_time':
                validation_start,
                'end_time':
                datetime.now(),
                'duration':
                validation_duration
            })

        return True
    def run_validation(self, job):
        """ Run validations for specified job
        Args:
            job: Job to be validated
        Returns:
            True if successful
        """

        sess = GlobalDB.db().session
        job_id = job.job_id

        error_list = ErrorInterface()

        submission_id = job.submission_id

        row_number = 1
        file_type = job.file_type.name
        validation_start = datetime.now()

        logger.info(
            {
                'message': 'Beginning run_validation on submission_id: ' + str(submission_id) +
                ', job_id: ' + str(job_id) + ', file_type: ' + file_type,
                'message_type': 'ValidatorInfo',
                'submission_id': submission_id,
                'job_id': job_id,
                'file_type': file_type,
                'action': 'run_validations',
                'status': 'start',
                'start_time': validation_start})
        # Get orm model for this file
        model = [ft.model for ft in FILE_TYPE if ft.name == file_type][0]

        # Delete existing file level errors for this submission
        sess.query(ErrorMetadata).filter(ErrorMetadata.job_id == job_id).delete()
        sess.commit()

        # Clear existing records for this submission
        sess.query(model).filter_by(submission_id=submission_id).delete()
        sess.commit()

        # Clear existing flex fields for this job
        sess.query(FlexField).filter_by(job_id=job_id).delete()
        sess.commit()

        # If local, make the error report directory
        if self.isLocal and not os.path.exists(self.directory):
            os.makedirs(self.directory)
        # Get bucket name and file name
        file_name = job.filename
        bucket_name = CONFIG_BROKER['aws_bucket']
        region_name = CONFIG_BROKER['aws_region']

        error_file_name = self.get_file_name(report_file_name(job.submission_id, False, job.file_type.name))
        warning_file_name = self.get_file_name(report_file_name(job.submission_id, True, job.file_type.name))

        # Create File Status object
        create_file_if_needed(job_id, file_name)

        reader = self.get_reader()

        # Get file size and write to jobs table
        if CONFIG_BROKER["use_aws"]:
            file_size = S3Handler.get_file_size(file_name)
        else:
            file_size = os.path.getsize(file_name)
        job.file_size = file_size
        sess.commit()

        # Get fields for this file
        fields = sess.query(FileColumn).filter(FileColumn.file_id == FILE_TYPE_DICT[file_type]).all()

        for field in fields:
            sess.expunge(field)

        csv_schema = {row.name_short: row for row in fields}

        try:
            extension = os.path.splitext(file_name)[1]
            if not extension or extension not in ['.csv', '.txt']:
                raise ResponseException("", StatusCode.CLIENT_ERROR, None, ValidationError.fileTypeError)

            # Count file rows: throws a File Level Error for non-UTF8 characters
            temp_file = open(reader.get_filename(region_name, bucket_name, file_name), encoding='utf-8')
            file_row_count = len(list(csv.reader(temp_file)))
            try:
                temp_file.close()
            except AttributeError:
                # File does not exist, and so does not need to be closed
                pass

            # Pull file and return info on whether it's using short or long col headers
            reader.open_file(region_name, bucket_name, file_name, fields, bucket_name, error_file_name,
                             self.long_to_short_dict, is_local=self.isLocal)

            # list to keep track of rows that fail validations
            error_rows = []

            # While not done, pull one row and put it into staging table if it passes
            # the Validator

            loading_start = datetime.now()
            logger.info(
                {
                    'message': 'Beginning data loading on submission_id: ' + str(submission_id) +
                    ', job_id: ' + str(job_id) + ', file_type: ' + file_type,
                    'message_type': 'ValidatorInfo',
                    'submission_id': submission_id,
                    'job_id': job_id,
                    'file_type': file_type,
                    'action': 'data_loading',
                    'status': 'start',
                    'start_time': loading_start})

            with self.get_writer(region_name, bucket_name, error_file_name, self.reportHeaders) as writer, \
                    self.get_writer(region_name, bucket_name, warning_file_name, self.reportHeaders) as warning_writer:
                while not reader.is_finished:
                    row_number += 1

                    if row_number % 100 == 0:

                        elapsed_time = (datetime.now()-loading_start).total_seconds()
                        logger.info(
                            {
                                'message': 'Loading row: ' + str(row_number) + ' on submission_id: ' +
                                str(submission_id) + ', job_id: ' + str(job_id) + ', file_type: ' + file_type,
                                'message_type': 'ValidatorInfo',
                                'submission_id': submission_id,
                                'job_id': job_id,
                                'file_type': file_type,
                                'action': 'data_loading',
                                'status': 'loading',
                                'rows_loaded': row_number,
                                'start_time': loading_start,
                                'elapsed_time': elapsed_time})
                    #
                    # first phase of validations: read record and record a
                    # formatting error if there's a problem
                    #
                    (record, reduceRow, skip_row, doneReading, rowErrorHere, flex_cols) = \
                        self.read_record(reader, writer, row_number, job, fields, error_list)
                    if reduceRow:
                        row_number -= 1
                    if rowErrorHere:
                        error_rows.append(row_number)
                    if doneReading:
                        # Stop reading from input file
                        break
                    elif skip_row:
                        # Do not write this row to staging, but continue processing future rows
                        continue

                    #
                    # second phase of validations: do basic schema checks
                    # (e.g., require fields, field length, data type)
                    #
                    # D files are obtained from upstream systems (ASP and FPDS) that perform their own basic
                    # validations, so these validations are not repeated here
                    if file_type in ["award", "award_procurement"]:
                        # Skip basic validations for D files, set as valid to trigger write to staging
                        passed_validations = True
                        valid = True
                    else:
                        if file_type in ["detached_award"]:
                            record['afa_generated_unique'] = (record['award_modification_amendme'] or '-none-') + \
                                  (record['awarding_sub_tier_agency_c'] or '-none-') + \
                                  (record['fain'] or '-none-') + (record['uri'] or '-none-')
                        passed_validations, failures, valid = Validator.validate(record, csv_schema,
                                                                                 file_type in ["detached_award"])
                    if valid:
                        # todo: update this logic later when we have actual validations
                        if file_type in ["detached_award"]:
                            record["is_valid"] = True

                        model_instance = model(job_id=job_id, submission_id=submission_id,
                                               valid_record=passed_validations, **record)
                        skip_row = not insert_staging_model(model_instance, job, writer, error_list)
                        if flex_cols:
                            sess.add_all(flex_cols)
                            sess.commit()

                        if skip_row:
                            error_rows.append(row_number)
                            continue

                    if not passed_validations:
                        fatal = write_errors(failures, job, self.short_to_long_dict, writer, warning_writer,
                                             row_number, error_list)
                        if fatal:
                            error_rows.append(row_number)

                loading_duration = (datetime.now()-loading_start).total_seconds()
                logger.info(
                    {
                        'message': 'Completed data loading on submission_id: ' + str(submission_id) +
                        ', job_id: ' + str(job_id) + ', file_type: ' + file_type,
                        'message_type': 'ValidatorInfo',
                        'submission_id': submission_id,
                        'job_id': job_id,
                        'file_type': file_type,
                        'action': 'data_loading',
                        'status': 'finish',
                        'start_time': loading_start,
                        'end_time': datetime.now(),
                        'duration': loading_duration,
                        'total_rows': row_number
                    })

                if file_type in ('appropriations', 'program_activity', 'award_financial'):
                    update_tas_ids(model, submission_id)
                #
                # third phase of validations: run validation rules as specified
                # in the schema guidance. these validations are sql-based.
                #
                sql_error_rows = self.run_sql_validations(job, file_type, self.short_to_long_dict, writer,
                                                          warning_writer, row_number, error_list)
                error_rows.extend(sql_error_rows)

                # Write unfinished batch
                writer.finish_batch()
                warning_writer.finish_batch()

            # Calculate total number of rows in file
            # that passed validations
            error_rows_unique = set(error_rows)
            total_rows_excluding_header = row_number - 1
            valid_rows = total_rows_excluding_header - len(error_rows_unique)

            # Update detached_award is_valid rows where applicable
            # Update submission to include action dates where applicable
            if file_type in ["detached_award"]:
                sess.query(DetachedAwardFinancialAssistance).\
                    filter(DetachedAwardFinancialAssistance.row_number.in_(error_rows_unique),
                           DetachedAwardFinancialAssistance.submission_id == submission_id).\
                    update({"is_valid": False}, synchronize_session=False)
                sess.commit()
                min_action_date, max_action_date = get_action_dates(submission_id)
                sess.query(Submission).filter(Submission.submission_id == submission_id).\
                    update({"reporting_start_date": min_action_date, "reporting_end_date": max_action_date},
                           synchronize_session=False)

            # Ensure validated rows match initial row count
            if file_row_count != row_number:
                raise ResponseException("", StatusCode.CLIENT_ERROR, None, ValidationError.rowCountError)

            # Update job metadata
            job.number_of_rows = row_number
            job.number_of_rows_valid = valid_rows
            sess.commit()

            error_list.write_all_row_errors(job_id)
            # Update error info for submission
            populate_job_error_info(job)

            if file_type in ["detached_award"]:
                # set number of errors and warnings for detached submission
                populate_submission_error_info(submission_id)

            # Mark validation as finished in job tracker
            mark_job_status(job_id, "finished")
            mark_file_complete(job_id, file_name)
        finally:
            # Ensure the file always closes
            reader.close()

            validation_duration = (datetime.now()-validation_start).total_seconds()
            logger.info(
                {
                    'message': 'Completed run_validation on submission_id: ' + str(submission_id) +
                    ', job_id: ' + str(job_id) + ', file_type: ' + file_type,
                    'message_type': 'ValidatorInfo',
                    'submission_id': submission_id,
                    'job_id': job_id,
                    'file_type': file_type,
                    'action': 'run_validation',
                    'status': 'finish',
                    'start_time': validation_start,
                    'end_time': datetime.now(),
                    'duration': validation_duration
                })

        return True
    def run_cross_validation(self, job):
        """ Cross file validation job. Test all rules with matching rule_timing.
            Run each cross-file rule and create error report.

            Args:
                job: Current job
        """
        sess = GlobalDB.db().session
        job_id = job.job_id
        # Create File Status object
        create_file_if_needed(job_id)
        # Create list of errors
        error_list = ErrorInterface()

        submission_id = job.submission_id
        bucket_name = CONFIG_BROKER['aws_bucket']
        region_name = CONFIG_BROKER['aws_region']
        job_start = datetime.now()
        logger.info(
            {
                'message': 'Beginning cross-file validations on submission_id: ' + str(submission_id),
                'message_type': 'ValidatorInfo',
                'submission_id': submission_id,
                'job_id': job.job_id,
                'action': 'run_cross_validations',
                'start': job_start,
                'status': 'start'})
        # Delete existing cross file errors for this submission
        sess.query(ErrorMetadata).filter(ErrorMetadata.job_id == job_id).delete()
        sess.commit()

        # get all cross file rules from db
        cross_file_rules = sess.query(RuleSql).filter_by(rule_cross_file_flag=True)

        # for each cross-file combo, run associated rules and create error report
        for c in get_cross_file_pairs():
            first_file = c[0]
            second_file = c[1]
            combo_rules = cross_file_rules.filter(or_(and_(
                RuleSql.file_id == first_file.id,
                RuleSql.target_file_id == second_file.id), and_(
                RuleSql.file_id == second_file.id,
                RuleSql.target_file_id == first_file.id)))
            # send comboRules to validator.crossValidate sql
            failures = cross_validate_sql(combo_rules.all(), submission_id, self.short_to_long_dict, first_file.id,
                                          second_file.id, job)
            # get error file name
            report_filename = self.get_file_name(report_file_name(submission_id, False, first_file.name,
                                                                  second_file.name))
            warning_report_filename = self.get_file_name(report_file_name(submission_id, True, first_file.name,
                                                                          second_file.name))

            # loop through failures to create the error report
            with self.get_writer(region_name, bucket_name, report_filename, self.crossFileReportHeaders) as writer, \
                    self.get_writer(region_name, bucket_name, warning_report_filename, self.crossFileReportHeaders) as \
                    warning_writer:
                for failure in failures:
                    if failure[9] == RULE_SEVERITY_DICT['fatal']:
                        writer.write(failure[0:7])
                    if failure[9] == RULE_SEVERITY_DICT['warning']:
                        warning_writer.write(failure[0:7])
                    error_list.record_row_error(job_id, "cross_file",
                                                failure[0], failure[3], failure[5], failure[6],
                                                failure[7], failure[8], severity_id=failure[9])
                # write the last unfinished batch
                writer.finish_batch()
                warning_writer.finish_batch()

        # write all recorded errors to database
        error_list.write_all_row_errors(job_id)
        # Update error info for submission
        populate_job_error_info(job)

        # mark job status as "finished"
        mark_job_status(job_id, "finished")
        job_duration = (datetime.now()-job_start).total_seconds()
        logger.info(
            {
                'message': 'Completed cross-file validations on submission_id: ' + str(submission_id),
                'message_type': 'ValidatorInfo',
                'submission_id': submission_id,
                'job_id': job.job_id,
                'action': 'run_cross_validations',
                'status': 'finish',
                'start': job_start,
                'duration': job_duration})
        # set number of errors and warnings for submission.
        submission = populate_submission_error_info(submission_id)
        # TODO: Remove temporary step below
        # Temporarily set publishable flag at end of cross file, remove this once users are able to mark their
        # submissions as publishable
        # Publish only if no errors are present
        if submission.number_of_errors == 0:
            submission.publishable = True
        sess.commit()

        # Mark validation complete
        mark_file_complete(job_id)
    def run_validation(self, job):
        """ Run validations for specified job

            Args:
                job: Job to be validated

            Returns:
                True if successful
        """

        sess = GlobalDB.db().session
        self.job = job
        self.submission_id = job.submission_id
        self.file_type = job.file_type
        self.file_name = job.filename
        self.is_fabs = (self.file_type.name == 'fabs')

        # initializing processing metadata vars for a new validation
        self.reader = CsvReader()
        self.error_list = ErrorInterface()
        self.error_rows = []
        self.max_row_number = 1
        self.total_rows = 0
        self.short_rows = []
        self.long_rows = []

        validation_start = datetime.now()
        bucket_name = CONFIG_BROKER['aws_bucket']
        region_name = CONFIG_BROKER['aws_region']

        self.log_str = 'on submission_id: {}, job_id: {}, file_type: {}'.format(
            str(self.submission_id), str(self.job.job_id), self.file_type.name)
        logger.info({
            'message': 'Beginning run_validation {}'.format(self.log_str),
            'message_type': 'ValidatorInfo',
            'submission_id': self.submission_id,
            'job_id': self.job.job_id,
            'file_type': self.file_type.name,
            'action': 'run_validations',
            'status': 'start',
            'start_time': validation_start
        })
        # Get orm model for this file
        self.model = [ft.model for ft in FILE_TYPE if ft.name == self.file_type.name][0]

        # Delete existing file level errors for this submission
        sess.query(ErrorMetadata).filter(ErrorMetadata.job_id == self.job.job_id).delete()
        sess.commit()
        # Clear existing records for this submission
        sess.query(self.model).filter_by(submission_id=self.submission_id).delete()
        sess.commit()
        # Clear existing flex fields for this job
        sess.query(FlexField).filter_by(job_id=self.job.job_id).delete()
        sess.commit()

        # If local, make the error report directory
        if self.is_local and not os.path.exists(self.directory):
            os.makedirs(self.directory)
        create_file_if_needed(self.job.job_id, self.file_name)

        # Get file size and write to jobs table
        if CONFIG_BROKER['use_aws']:
            file_size = S3Handler.get_file_size(self.file_name)
        else:
            file_size = os.path.getsize(self.file_name)
        self.job.file_size = file_size
        sess.commit()

        # Get fields for this file
        self.fields = sess.query(FileColumn).filter(FileColumn.file_id == FILE_TYPE_DICT[self.file_type.name])\
            .order_by(FileColumn.daims_name.asc()).all()
        self.expected_headers, self.parsed_fields = parse_fields(sess, self.fields)
        self.csv_schema = {row.name_short: row for row in self.fields}

        try:
            # Loading data and initial validations
            self.load_file_data(sess, bucket_name, region_name)

            if self.file_type.name in ('appropriations', 'program_activity', 'award_financial'):
                update_tas_ids(self.model, self.submission_id)

            # SQL Validations
            with open(self.error_file_path, 'a', newline='') as error_file, \
                    open(self.warning_file_path, 'a', newline='') as warning_file:
                error_csv = csv.writer(error_file, delimiter=',', quoting=csv.QUOTE_MINIMAL, lineterminator='\n')
                warning_csv = csv.writer(warning_file, delimiter=',', quoting=csv.QUOTE_MINIMAL, lineterminator='\n')

                # third phase of validations: run validation rules as specified in the schema guidance. These
                # validations are sql-based.
                sql_error_rows = self.run_sql_validations(self.short_to_long_dict[self.file_type.file_type_id],
                                                          error_csv, warning_csv)
                self.error_rows.extend(sql_error_rows)
            error_file.close()
            warning_file.close()

            # stream file to S3 when not local
            if not self.is_local:
                s3_resource = boto3.resource('s3', region_name=region_name)
                # stream error file
                with open(self.error_file_path, 'rb') as csv_file:
                    s3_resource.Object(bucket_name, self.get_file_name(self.error_file_name)).put(Body=csv_file)
                csv_file.close()
                os.remove(self.error_file_path)

                # stream warning file
                with open(self.warning_file_path, 'rb') as warning_csv_file:
                    s3_resource.Object(bucket_name,
                                       self.get_file_name(self.warning_file_name)).put(Body=warning_csv_file)
                warning_csv_file.close()
                os.remove(self.warning_file_path)

            # Calculate total number of rows in file that passed validations
            error_rows_unique = set(self.error_rows)
            total_rows_excluding_header = self.total_rows - 1
            valid_rows = total_rows_excluding_header - len(error_rows_unique)

            # Update fabs is_valid rows where applicable
            # Update submission to include action dates where applicable
            if self.is_fabs:
                sess.query(DetachedAwardFinancialAssistance). \
                    filter(DetachedAwardFinancialAssistance.row_number.in_(error_rows_unique),
                           DetachedAwardFinancialAssistance.submission_id == self.submission_id). \
                    update({'is_valid': False}, synchronize_session=False)
                sess.commit()
                min_action_date, max_action_date = get_action_dates(self.submission_id)
                sess.query(Submission).filter(Submission.submission_id == self.submission_id). \
                    update({'reporting_start_date': min_action_date, 'reporting_end_date': max_action_date},
                           synchronize_session=False)

            # Update job metadata
            self.job.number_of_rows = self.total_rows
            self.job.number_of_rows_valid = valid_rows
            sess.commit()

            self.error_list.write_all_row_errors(self.job.job_id)
            # Update error info for submission
            populate_job_error_info(self.job)

            if self.is_fabs:
                # set number of errors and warnings for detached submission
                populate_submission_error_info(self.submission_id)

            # Mark validation as finished in job tracker
            mark_job_status(self.job.job_id, 'finished')
            mark_file_complete(self.job.job_id, self.file_name)

        except Exception:
            logger.error({
                'message': 'An exception occurred during validation',
                'message_type': 'ValidatorInfo',
                'submission_id': self.submission_id,
                'job_id': self.job.job_id,
                'file_type': self.file_type.name,
                'traceback': traceback.format_exc()
            })
            raise

        finally:
            # Ensure the files always close
            self.reader.close()

            validation_duration = (datetime.now()-validation_start).total_seconds()
            logger.info({
                'message': 'Completed run_validation {}'.format(self.log_str),
                'message_type': 'ValidatorInfo',
                'submission_id': self.submission_id,
                'job_id': self.job.job_id,
                'file_type': self.file_type.name,
                'action': 'run_validation',
                'status': 'finish',
                'start_time': validation_start,
                'end_time': datetime.now(),
                'duration': validation_duration
            })

        return True