Ejemplo n.º 1
0
def load_ztf_data(
        phot_path='/media/biswajit/drive/Kilonova_datasets/ZTF_20190512/ZTF_MSIP_MODEL64/ZTF_MSIP_NONIaMODEL0-0001_PHOT.FITS',
        drop_separators=True):
    df_header, df_phot = read_fits(phot_path)
    df_header = Table.from_pandas(df_header)
    df_phot = Table.from_pandas(df_phot)
    df_phot['FLT'][df_phot['FLT'] == b'g '] = 'g'
    df_phot['FLT'][df_phot['FLT'] == b'r '] = 'r'
    data_ob = Data(df_metadata=df_header,
                   df_data=df_phot,
                   object_id_col_name='SNID',
                   time_col_name='MJD',
                   target_col_name='SNTYPE',
                   band_col_name='FLT',
                   flux_col_name='FLUXCAL',
                   flux_err_col_name='FLUXCALERR',
                   band_map={
                       'g': 'g',
                       'r': 'r'
                   },
                   bands=['g', 'r'])
    if drop_separators:
        data_ob.df_data = data_ob.df_data[
            data_ob.df_data[data_ob.time_col_name] != -777]
    return data_ob
Ejemplo n.º 2
0
def create_alert_data_obj(data, bands):
    band_map = {}
    for item in bands:
        band_map[item] = item
    data_ob = Data(df_metadata=data,
                   df_data=data,
                   object_id_col_name='SNID',
                   time_col_name='MJD',
                   band_col_name='FLT',
                   flux_col_name='FLUXCAL',
                   flux_err_col_name='FLUXCALERR',
                   band_map=band_map,
                   bands=bands)
    return data_ob
Ejemplo n.º 3
0
def load_ztf_test_data(
    head_path='/media/biswajit/drive/Kilonova_datasets/ZTF_20190512/test_HEAD.FITS',
    phot_path='/media/biswajit/drive/Kilonova_datasets/ZTF_20190512/test_PHOT.FITS'
):
    df_header = Table.read(head_path, format='fits')
    df_phot = Table.read(phot_path, format='fits')
    data_ob = Data(df_metadata=df_header,
                   df_data=df_phot,
                   object_id_col_name='SNID',
                   time_col_name='MJD',
                   target_col_name='SNTYPE',
                   band_col_name='FLT',
                   flux_col_name='FLUXCAL',
                   flux_err_col_name='FLUXCALERR',
                   band_map={
                       'g': 'g',
                       'r': 'r'
                   })
    return data_ob
Ejemplo n.º 4
0
def load_RESSPECT_data(
    phot_df_file_path="/media/biswajit/drive/Kilonova_datasets/RESSPECT"
    "/RESSPECT_PERFECT_LIGHTCURVE.csv",
    meta_df_file_path="/media/biswajit/drive/Kilonova_datasets/RESSPECT/RESSPECT_PERFECT_HEAD.csv"
):
    df_meta_data = Table.read(meta_df_file_path, delimiter=",")
    df_data = Table.read(phot_df_file_path)
    data_ob = Data(df_metadata=df_meta_data,
                   df_data=df_data,
                   object_id_col_name='SNID',
                   time_col_name='MJD',
                   band_col_name='FLT',
                   flux_col_name='FLUXCAL',
                   flux_err_col_name='FLUXCALERR',
                   band_map={
                       'u': 'u',
                       'g': 'g',
                       'r': 'r',
                       'i': 'i',
                       'z': 'z',
                       'Y': 'y'
                   })
    return data_ob
Ejemplo n.º 5
0
def load_PLAsTiCC_data(
    phot_df_file_path="/media/biswajit/drive/Kilonova_datasets/PLAsTiCC_data/training_set.csv",
    meta_df_file_path="/media/biswajit/drive/Kilonova_datasets/PLAsTiCC_data/training_set_metadata.csv"
):
    df_meta_data = Table.read(meta_df_file_path, delimiter=",")
    df_data = Table.read(phot_df_file_path)
    data_ob = Data(df_metadata=df_meta_data,
                   df_data=df_data,
                   object_id_col_name='object_id',
                   time_col_name='mjd',
                   band_col_name='passband',
                   flux_col_name='flux',
                   flux_err_col_name='flux_err',
                   target_col_name='target',
                   band_map={
                       0: 'u',
                       1: 'g',
                       2: 'r',
                       3: 'i',
                       4: 'z',
                       5: 'y'
                   })
    return data_ob
Ejemplo n.º 6
0
            time[stamp.timestamp.hour][stamp.sender] += 1
        return time

    def day_of_week(self):
        man, woman = config.config['MAN'], config.config['WOMAN']
        weekday = OrderedDict([('Monday',{man:0, woman:0}), ('Tuesday',{man:0, woman:0}), ('Wednesday',{man:0, woman:0}),
                ('Thursday',{man:0, woman:0}), ('Friday',{man:0, woman:0}), ('Saturday',{man:0, woman:0}), ('Sunday',{man:0, woman:0})])
        
        for index, stamp in self.df.iterrows():
            weekday[stamp.timestamp.day_name()][stamp.sender] += 1
        return weekday

    def messages_per_month(self):
        man, woman = config.config['MAN'], config.config['WOMAN']
        month = OrderedDict([("January",{man:0, woman:0}),("February",{man:0, woman:0}),("March",{man:0, woman:0}),
            ("April",{man:0, woman:0}),("May",{man:0, woman:0}),("June",{man:0, woman:0}),("July",{man:0, woman:0}),
            ("August",{man:0, woman:0}),("September",{man:0, woman:0}),("October",{man:0, woman:0}),
            ("November",{man:0, woman:0}), ("December",{man:0, woman:0})])

        for index, stamp in self.df.iterrows():
            month[stamp.timestamp.month_name()][stamp.sender] += 1
        return month

if __name__ == '__main__':
    data = Data(config.config['FILE_NAME'])
    df = data.parse_file()
    analysed_data = Analyse(df)

    print(analysed_data.words_from_each())
    # print(analysed_data.messages_from_each())
    # print(analysed_data.average_character_length())