def __init__(self, args):
        # Set the folder to save the records and checkpoints
        log_base_dir = './logs/'
        if not osp.exists(log_base_dir):
            os.mkdir(log_base_dir)
        meta_base_dir = osp.join(log_base_dir, 'meta')
        if not osp.exists(meta_base_dir):
            os.mkdir(meta_base_dir)
        save_path1 = '_'.join([args.dataset, args.model_type, 'MTL'])
        save_path2 = 'shot' + str(args.shot) + '_way' + str(args.way) + '_query' + str(args.train_query) + \
            '_step' + str(args.step_size) + '_gamma' + str(args.gamma) + '_lr1' + str(args.meta_lr1) + '_lr2' + str(args.meta_lr2) + \
            '_batch' + str(args.num_batch) + '_maxepoch' + str(args.max_epoch) + \
            '_baselr' + str(args.base_lr) + '_updatestep' + str(args.update_step) + \
            '_stepsize' + str(args.step_size) + '_' + args.meta_label
        args.save_path = meta_base_dir + '/' + save_path1 + '_' + save_path2
        ensure_path(args.save_path)

        # Set args to be shareable in the class
        self.args = args

        # Load meta-train set
        self.trainset = Dataset('train', self.args)
        self.train_sampler = CategoriesSampler(self.trainset.label, self.args.num_batch, self.args.way, self.args.shot + self.args.train_query)
        self.train_loader = DataLoader(dataset=self.trainset, batch_sampler=self.train_sampler, num_workers=8, pin_memory=True)

        # Load meta-val set
        self.valset = Dataset('val', self.args)
        self.val_sampler = CategoriesSampler(self.valset.label, 600, self.args.way, self.args.shot + self.args.val_query)
        self.val_loader = DataLoader(dataset=self.valset, batch_sampler=self.val_sampler, num_workers=8, pin_memory=True)
        
        # Build meta-transfer learning model
        self.model = MtlLearner(self.args)

        # Set optimizer 
        self.optimizer = torch.optim.Adam([{'params': filter(lambda p: p.requires_grad, self.model.encoder.parameters())}, \
            {'params': self.model.base_learner.parameters(), 'lr': self.args.meta_lr2}], lr=self.args.meta_lr1)
        # Set learning rate scheduler 
        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=self.args.step_size, gamma=self.args.gamma)        
        
        # load pretrained model without FC classifier
        self.model_dict = self.model.state_dict()
        if self.args.init_weights is not None:
            pretrained_dict = torch.load(self.args.init_weights)['params']
        else:
            pre_base_dir = osp.join(log_base_dir, 'pre')
            pre_save_path1 = '_'.join([args.dataset, args.model_type])
            pre_save_path2 = 'batchsize' + str(args.pre_batch_size) + '_lr' + str(args.pre_lr) + '_gamma' + str(args.pre_gamma) + '_step' + \
                str(args.pre_step_size) + '_maxepoch' + str(args.pre_max_epoch)
            pre_save_path = pre_base_dir + '/' + pre_save_path1 + '_' + pre_save_path2
            pretrained_dict = torch.load(osp.join(pre_save_path, 'max_acc.pth'))['params']
        pretrained_dict = {'encoder.'+k: v for k, v in pretrained_dict.items()}
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in self.model_dict}
        print(pretrained_dict.keys())
        self.model_dict.update(pretrained_dict)
        self.model.load_state_dict(self.model_dict)    

        # Set model to GPU
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.model = self.model.cuda()
Ejemplo n.º 2
0
    def __init__(self, args, phase):
        # set args to self attr
        for k, v in vars(args).items():
            self.__setattr__(k, v)

        self.dataset_dir = osp.join(self.dataset_basedir, self.dataset_name)

        # set up gpu
        self.use_gpu = len(self.gpus) != '-1' and torch.cuda.is_available()

        # load training set
        self.train_set = Dataset('train', self.dataset_dir, train_aug=True)
        self.train_loader = DataLoader(dataset=self.train_set,
                                       batch_size=self.batch_size_pre,
                                       shuffle=True,
                                       num_workers=8,
                                       pin_memory=self.use_gpu)

        # load validation set
        self.val_set = Dataset('val', self.dataset_dir)
        self.val_sampler = CategoriesSampler(label=self.val_set.labels,
                                             n_batch=600,
                                             n_cls=self.way_pre,
                                             n_per=self.shot_pre + self.query_pre)

        self.val_loader = DataLoader(dataset=self.val_set,
                                     batch_sampler=self.val_sampler,
                                     num_workers=8,
                                     pin_memory=self.use_gpu)
Ejemplo n.º 3
0
    def __init__(self, args):

        # set args to self attr
        for k, v in vars(args).items():
            self.__setattr__(k, v)

        self.dataset_dir = osp.join(self.dataset_basedir, self.dataset_name)

        # set up gpu
        self.use_gpu = self.gpu != '-1'

        # load training set
        self.train_set = Dataset('train', self.dataset_dir, train_aug=True)
        self.train_loader = DataLoader(dataset=self.train_set,
                                       batch_size=self.batch_size_pre,
                                       shuffle=True,
                                       num_workers=8,
                                       pin_memory=self.use_gpu)

        # load validation set
        self.val_set = Dataset('val', self.dataset_dir)
        self.val_sampler = CategoriesSampler(label=self.val_set.labels,
                                             n_batch=600,
                                             n_cls=self.way_pre,
                                             n_per=self.shot_pre + self.query_pre)

        self.val_loader = DataLoader(dataset=self.val_set,
                                     batch_sampler=self.val_sampler,
                                     num_workers=8,
                                     pin_memory=self.use_gpu)

        # set pretrain class number
        num_class_pretrain = self.train_set.num_class
        self.Learner = MetaTransformLearner(args=args, num_cls=num_class_pretrain)

        # set the pretrain log
        self.train_log = {
            'train_loss': [],
            'val_loss': [],
            'train_acc': [],
            'val_acc': [],
            'max_acc': self.Learner.checkpoints_pre['max_metric'],
            'max_acc_epoch': 0,
        }

        # set tensorboardX
        self.log_dir = '/'.join([self.log_dir, self.Learner.time_pre])
        self.writer = SummaryWriter(log_dir=self.log_dir)

        # generate the label for eval
        label = torch.arange(end=self.way_pre).repeat(self.shot_pre + self.query_pre)
        if self.use_gpu:
            self.Learner = self.Learner.cuda()
            label = label.cuda()

        self.label_shot = label[:self.way_pre * self.shot_pre]  # for few train
        self.label_query = label[self.way_pre * self.shot_pre:]  # for eval
Ejemplo n.º 4
0
Archivo: pre.py Proyecto: fzohra/despur
    def __init__(self, args):
        # Set the folder to save the records and checkpoints
        log_base_dir = './logs/'
        if not osp.exists(log_base_dir):
            os.mkdir(log_base_dir)
        pre_base_dir = osp.join(log_base_dir, 'pre')
        if not osp.exists(pre_base_dir):
            os.mkdir(pre_base_dir)
        save_path1 = '_'.join([args.dataset, args.model_type])
        save_path2 = 'batchsize' + str(args.pre_batch_size) + '_lr' + str(args.pre_lr) + '_gamma' + str(args.pre_gamma) + '_step' + \
            str(args.pre_step_size) + '_maxepoch' + str(args.pre_max_epoch)
        args.save_path = pre_base_dir + '/' + save_path1 + '_' + save_path2
        ensure_path(args.save_path)

        # Set args to be shareable in the class
        self.args = args

        # Load pretrain set
        self.trainset = Dataset('train', self.args, train_aug=True)
        self.train_loader = DataLoader(dataset=self.trainset,
                                       batch_size=args.pre_batch_size,
                                       shuffle=True,
                                       num_workers=8,
                                       pin_memory=True)

        # Load meta-val set
        self.valset = Dataset('val', self.args)
        self.val_sampler = CategoriesSampler(
            self.valset.label, 600, self.args.way,
            self.args.shot + self.args.val_query)
        self.val_loader = DataLoader(dataset=self.valset,
                                     batch_sampler=self.val_sampler,
                                     num_workers=8,
                                     pin_memory=True)

        # Set pretrain class number
        num_class_pretrain = self.trainset.num_class

        # Build pretrain model
        self.model = MtlLearner(self.args,
                                mode='pre',
                                num_cls=num_class_pretrain)

        # Set optimizer
        self.optimizer = torch.optim.SGD([{'params': self.model.encoder.parameters(), 'lr': self.args.pre_lr}, \
            {'params': self.model.pre_fc.parameters(), 'lr': self.args.pre_lr}], \
                momentum=self.args.pre_custom_momentum, nesterov=True, weight_decay=self.args.pre_custom_weight_decay)
        # Set learning rate scheduler
        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=self.args.pre_step_size, \
            gamma=self.args.pre_gamma)

        # Set model to GPU
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.model = self.model.cuda()
Ejemplo n.º 5
0
 def get_base_means(self, normalize=False):
     num_classes = self.num_classes
     # save_dir = "pretrain/%s%s_%s_%s_mean.npy" % (pre, self.dataset, self.method, self.model_name)
     # ensure_path("pretrain")
     # self.means_save_dir = osp.join("logs/means", "%s_%s.npy" % (self.args.dataset, str(is_cosine_feature)))
     # Load pretrain set
     num_workers = 8
     if self.args.debug:
         num_workers = 0
     self.trainset = Dataset('train', self.args, dataset=self.dataset, train_aug=False)
     self.train_loader = DataLoader(dataset=self.trainset, batch_size=self.args.pre_batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
     means = torch.zeros(num_classes, 640).cuda()
     counts = torch.zeros(num_classes).cuda()
     for epoch in range(1):
         tqdm_gen = tqdm.tqdm(self.train_loader)
         for i, batch in enumerate(tqdm_gen, 1):
             data, _ = [_.cuda() for _ in batch]
             label = batch[1]
             with torch.no_grad():
                 data = self.encoder(data)
             if normalize:
                 data = self.normalize(data)
             for j in range(data.shape[0]):
                 means[label[j]] += data[j]
                 counts[label[j]] += 1
     counts = counts.unsqueeze(1).expand_as(means)
     means = means / counts
     means_np = means.cpu().detach().numpy()
     # np.save(save_dir, means_np)
     return means_np
Ejemplo n.º 6
0
    def __init__(self, args):
        # Set the folder to save the records and checkpoints
        log_base_dir = '../logs/'
        if not osp.exists(log_base_dir):
            os.mkdir(log_base_dir)
        pre_base_dir = osp.join(log_base_dir, 'pre')
        if not osp.exists(pre_base_dir):
            os.mkdir(pre_base_dir)
        save_path1 = '_'.join([args.dataset, args.model_type])
        save_path2 = 'batchsize' + str(args.pre_batch_size) + '_lr' + str(args.pre_lr) + '_gamma' + str(args.pre_gamma) + '_step' + \
            str(args.pre_step_size) + '_maxepoch' + str(args.pre_max_epoch)
        args.save_path = pre_base_dir + '/' + save_path1 + '_' + save_path2
        ensure_path(args.save_path)

        # Set args to be shareable in the class
        self.args = args

        # Load pretrain set
        self.trainset = Dataset('train', self.args)
        self.train_loader = DataLoader(dataset=self.trainset, batch_size=args.pre_batch_size, shuffle=True, num_workers=8, pin_memory=True)

        # Load pre-val set
        self.valset = mDataset('val', self.args)
        self.val_sampler = CategoriesSampler(self.valset.labeln,self.args.num_batch , self.args.way, self.args.shot + self.args.val_query,self.args.shot)
        self.val_loader = DataLoader(dataset=self.valset, batch_sampler=self.val_sampler, num_workers=8, pin_memory=True)


        # Build pretrain model
        self.model = MtlLearner(self.args, mode='train')
        print(self.model)
        
        '''
        if self.args.pre_init_weights is not None:
            self.model_dict = self.model.state_dict()
            pretrained_dict = torch.load(self.args.pre_init_weights)['params']
            pretrained_dict = {'encoder.'+k: v for k, v in pretrained_dict.items()}
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in self.model_dict}
            print(pretrained_dict.keys())
            self.model_dict.update(pretrained_dict)
            self.model.load_state_dict(self.model_dict)   
        '''
        self.FL=FocalLoss()
        self.CD=CE_DiceLoss()
        self.LS=LovaszSoftmax()
        # Set optimizer 
        # Set optimizer 
        self.optimizer = torch.optim.SGD([{'params': self.model.encoder.parameters(), 'lr': self.args.pre_lr}], \
                momentum=self.args.pre_custom_momentum, nesterov=True, weight_decay=self.args.pre_custom_weight_decay)

            # Set learning rate scheduler 
        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=self.args.pre_step_size, \
            gamma=self.args.pre_gamma)        

        # Set model to GPU
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.model = self.model.cuda()
    def eval(self):
        """The function for the meta-eval phase."""
        # Load the logs
        trlog = torch.load(osp.join(self.args.save_path, 'trlog'))

        # Load meta-test set
        test_set = Dataset('test', self.args)
        sampler = CategoriesSampler(test_set.label, 600, self.args.way, self.args.shot + self.args.val_query)
        loader = DataLoader(test_set, batch_sampler=sampler, num_workers=8, pin_memory=True)

        # Set test accuracy recorder
        test_acc_record = np.zeros((600,))

        # Load model for meta-test phase
        if self.args.eval_weights is not None:
            self.model.load_state_dict(torch.load(self.args.eval_weights)['params'])
        else:
            self.model.load_state_dict(torch.load(osp.join(self.args.save_path, 'max_acc' + '.pth'))['params'])
        # Set model to eval mode
        self.model.eval()

        # Set accuracy averager
        ave_acc = Averager()

        # Generate labels
        label = torch.arange(self.args.way).repeat(self.args.val_query)
        if torch.cuda.is_available():
            label = label.type(torch.cuda.LongTensor)
        else:
            label = label.type(torch.LongTensor)
        label_shot = torch.arange(self.args.way).repeat(self.args.shot)
        if torch.cuda.is_available():
            label_shot = label_shot.type(torch.cuda.LongTensor)
        else:
            label_shot = label_shot.type(torch.LongTensor)
            
        # Start meta-test
        for i, batch in enumerate(loader, 1):
            if torch.cuda.is_available():
                data, _ = [_.cuda() for _ in batch]
            else:
                data = batch[0]
            k = self.args.way * self.args.shot
            data_shot, data_query = data[:k], data[k:]
            logits = self.model((data_shot, label_shot, data_query))
            acc = count_acc(logits, label)
            ave_acc.add(acc)
            test_acc_record[i-1] = acc
            if i % 100 == 0:
                print('batch {}: {:.2f}({:.2f})'.format(i, ave_acc.item() * 100, acc * 100))
            
        # Calculate the confidence interval, update the logs
        m, pm = compute_confidence_interval(test_acc_record)
        print('Val Best Epoch {}, Acc {:.4f}, Test Acc {:.4f}'.format(trlog['max_acc_epoch'], trlog['max_acc'], ave_acc.item()))
        print('Test Acc {:.4f} + {:.4f}'.format(m, pm))
Ejemplo n.º 8
0
    def eval(self):
        """The function for the meta-evaluate (test) phase."""
        # Load the logs
        trlog = torch.load(osp.join(self.args.save_path, 'trlog'))

        # Load meta-test set
        self.test_set = Dataset('test', self.args)
        self.sampler = CategoriesSampler(self.test_set.labeln,
                                         self.args.num_batch,
                                         self.args.way + 1,
                                         self.args.train_query,
                                         self.args.test_query)
        self.loader = DataLoader(dataset=self.test_set,
                                 batch_sampler=self.sampler,
                                 num_workers=8,
                                 pin_memory=True)

        # Load model for meta-test phase
        if self.args.eval_weights is not None:
            self.model.load_state_dict(
                torch.load(self.args.eval_weights)['params'])
        else:
            self.model.load_state_dict(
                torch.load(osp.join(self.args.save_path,
                                    'max_iou' + '.pth'))['params'])
        # Set model to eval mode
        self.model.eval()

        # Set accuracy(IoU) averager
        ave_acc = Averager()

        # Start meta-test
        K = self.args.way + 1
        N = self.args.train_query
        Q = self.args.test_query

        count = 1
        for i, batch in enumerate(self.loader, 1):
            if torch.cuda.is_available():
                data, labels, _ = [_.cuda() for _ in batch]
            else:
                data = batch[0]
                labels = batch[1]

            p = K * N
            im_train, im_test = data[:p], data[p:]

            #Adjusting labels for each meta task
            labels = downlabel(labels, K)
            out_train, out_test = labels[:p], labels[p:]

            if (torch.cuda.is_available()):
                im_train = im_train.cuda()
                im_test = im_test.cuda()
                out_train = out_train.cuda()
                out_test = out_test.cuda()

            #Reshaping train set ouput
            Ytr = out_train.reshape(-1)
            Ytr = onehot(Ytr, K)  #One hot encoding for loss

            Yte = out_test.reshape(out_test.shape[0], -1)

            if (torch.cuda.is_available()):
                Ytr = Ytr.cuda()
                Yte = Yte.cuda()
            # Output logits for model
            Gte = self.model(im_train, Ytr, im_test, Yte)
            GteT = torch.transpose(Gte, 1, 2)

            # Calculate meta-train accuracy
            self._reset_metrics()
            seg_metrics = eval_metrics(GteT, Yte, K)
            self._update_seg_metrics(*seg_metrics)
            pixAcc, mIoU, _ = self._get_seg_metrics(K).values()

            ave_acc.add(mIoU)

            #Saving Test Image, Ground Truth Image and Predicted Image
            for j in range(K * Q):

                x1 = im_test[j].detach().cpu()
                y1 = out_test[j].detach().cpu()
                z1 = GteT[j].detach().cpu()
                z1 = torch.argmax(z1, axis=0)

                m = int(math.sqrt(z1.shape[0]))
                z2 = z1.reshape(m, m)

                x = transforms.ToPILImage()(x1).convert("RGB")
                y = Image.fromarray(decode_segmap(y1, K))
                z = Image.fromarray(decode_segmap(z2, K))

                px = self.args.save_image_dir + str(count) + 'a.jpg'
                py = self.args.save_image_dir + str(count) + 'b.png'
                pz = self.args.save_image_dir + str(count) + 'c.png'
                x.save(px)
                y.save(py)
                z.save(pz)
                count = count + 1

        # Test mIoU
        ave_acc = ave_acc.item()
        print("=============================================================")
        print('Average Test mIoU: {:.4f}'.format(ave_acc))
        print("Images Saved!")
        print("=============================================================")
Ejemplo n.º 9
0
    def __init__(self, args):
        # Set the folder to save the records and checkpoints
        save_image_dir = '../results1/'
        if not osp.exists(save_image_dir):
            os.mkdir(save_image_dir)

        log_base_dir = '../logs1/'
        if not osp.exists(log_base_dir):
            os.mkdir(log_base_dir)
        meta_base_dir = osp.join(log_base_dir, 'meta')
        if not osp.exists(meta_base_dir):
            os.mkdir(meta_base_dir)
        save_path1 = '_'.join([args.dataset, args.model_type, 'MTL'])
        save_path2 = '_mtype' + str(args.mtype) + '_shot' + str(args.train_query) + '_way' + str(args.way) + '_query' + str(args.train_query) + \
            '_step' + str(args.step_size) + '_gamma' + str(args.gamma) + '_lr' + str(args.meta_lr) + \
            '_batch' + str(args.num_batch) + '_maxepoch' + str(args.max_epoch) + \
            '_baselr' + str(args.base_lr) + '_updatestep' + str(args.update_step) + \
            '_stepsize' + str(args.step_size) + '_' + args.meta_label
        args.save_path = meta_base_dir + '/' + save_path1 + '_' + save_path2
        args.save_image_dir = save_image_dir
        ensure_path(args.save_path)

        # Set args to be shareable in the class
        self.args = args

        # Load meta-train set
        self.trainset = Dataset('train', self.args)
        self.train_sampler = CategoriesSampler(self.trainset.labeln,
                                               self.args.num_batch,
                                               self.args.way + 1,
                                               self.args.train_query,
                                               self.args.test_query)
        self.train_loader = DataLoader(dataset=self.trainset,
                                       batch_sampler=self.train_sampler,
                                       num_workers=8,
                                       pin_memory=True)

        # Load meta-val set
        if (self.args.valdata == 'Yes'):
            self.valset = Dataset('val', self.args)
            self.val_sampler = CategoriesSampler(self.valset.labeln,
                                                 self.args.num_batch,
                                                 self.args.way + 1,
                                                 self.args.train_query,
                                                 self.args.test_query)
            self.val_loader = DataLoader(dataset=self.valset,
                                         batch_sampler=self.val_sampler,
                                         num_workers=8,
                                         pin_memory=True)

        # Build meta-transfer learning model
        self.model = MtlLearner(self.args)
        self.CD = CE_DiceLoss()
        self.FL = FocalLoss()
        self.LS = LovaszSoftmax()

        # Set model to GPU
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.model = self.model.cuda()

        # Set optimizer
        self.optimizer = torch.optim.Adam([{
            'params':
            filter(lambda p: p.requires_grad, self.model.encoder.parameters())
        }],
                                          lr=self.args.meta_lr)

        # Set learning rate scheduler
        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
            self.optimizer,
            step_size=self.args.step_size,
            gamma=self.args.gamma)

        # load pretrained model
        # Path should nbe changed accordingly

        self.model.load_state_dict(
            torch.load(osp.join(self.args.save_path,
                                'epoch24' + '.pth'))['params'])
        self.optimizer.load_state_dict(
            torch.load(osp.join(self.args.save_path,
                                'epoch24' + '_o.pth'))['params_o'])
        self.lr_scheduler.load_state_dict(
            torch.load(osp.join(self.args.save_path,
                                'epoch24' + '_s.pth'))['params_s'])

        self.model_dict = self.model.state_dict()
        self.optimizer_dict = self.optimizer.state_dict()
        self.lr_scheduler_dict = self.lr_scheduler.state_dict()

        #Total Model Parameters
        pytorch_total_params = sum(p.numel() for p in self.model.parameters()
                                   if p.requires_grad)
        print("Total Trainable Parameters in the Model: " +
              str(pytorch_total_params))
Ejemplo n.º 10
0
    def eval(self):
        """The function for the meta-eval phase."""
        # Load the logs
        # trlog = torch.load(osp.join(self.args.save_path, 'trlog'))

        num_workers = 8
        if self.args.debug:
            num_workers = 0

        self.test_iter = 2000
        # Load meta-test set
        test_set = Dataset('test',
                           self.args,
                           dataset=self.args.param.dataset,
                           train_aug=False)
        sampler = CategoriesSampler(test_set.label, self.test_iter,
                                    self.args.way,
                                    self.args.shot + self.args.val_query)
        loader = DataLoader(test_set,
                            batch_sampler=sampler,
                            num_workers=num_workers,
                            pin_memory=True)

        # Set test accuracy recorder
        test_acc_record = np.zeros((self.test_iter, ))

        # Load model for meta-test phase
        if self.args.eval_weights is not None:
            self.model.load_state_dict(
                torch.load(self.args.eval_weights)['params'])
        else:
            # Load according to config file
            args = self.args
            base_path = "/data2/yuezhongqi/Model/ifsl/mtl"
            if args.param.dataset == "tiered":
                add_path = "tiered_"
            else:
                add_path = ""
            if args.param.model == "ResNet10":
                add_path += "resnet_"
            elif args.param.model == "wideres":
                add_path += "wrn_"
            elif "baseline" in args.config:
                add_path += "baseline_"
            else:
                add_path += "edsplit_"
            add_path += str(args.param.shot)
            self.add_path = add_path
            self.model.load_state_dict(
                torch.load(osp.join(base_path, add_path + '.pth'))['params'])
        # Set model to eval mode
        self.model.eval()

        # Set accuracy averager
        ave_acc = Averager()
        # Generate labels
        label = torch.arange(self.args.way).repeat(self.args.val_query)
        if torch.cuda.is_available():
            label = label.type(torch.cuda.LongTensor)
        else:
            label = label.type(torch.LongTensor)
        label_shot = torch.arange(self.args.way).repeat(self.args.shot)
        if torch.cuda.is_available():
            label_shot = label_shot.type(torch.cuda.LongTensor)
        else:
            label_shot = label_shot.type(torch.LongTensor)

        hacc = Hacc()
        # Start meta-test
        for i, batch in enumerate(loader, 1):
            if torch.cuda.is_available():
                data, _ = [_.cuda() for _ in batch]
            else:
                data = batch[0]
            k = self.args.way * self.args.shot
            data_shot, data_query = data[:k], data[k:]
            logits = self.model((data_shot, label_shot, data_query, True))
            acc = count_acc(logits, label)
            hardness, correct = get_hardness_correct(logits, label_shot, label,
                                                     data_shot, data_query,
                                                     self.model.pretrain)
            ave_acc.add(acc)
            hacc.add_data(hardness, correct)
            test_acc_record[i - 1] = acc
            if i % 100 == 0:
                #print('batch {}: {:.2f}({:.2f})'.format(i, ave_acc.item() * 100, acc * 100))
                print("Average acc:{:.4f}, Average hAcc:{:.4f}".format(
                    ave_acc.item(), hacc.get_topk_hard_acc()))

        # Modify add path to generate test case name:
        test_case_name = self.add_path
        if self.args.cross:
            test_case_name += "_cross"
        # Calculate the confidence interval, update the logs
        m, pm = compute_confidence_interval(test_acc_record)
        msg = test_case_name + ' Test Acc {:.4f} +- {:.4f}, hAcc {:.4f}'.format(
            ave_acc.item() * 100, pm * 100, hacc.get_topk_hard_acc())
        print(msg)
        self.write_output_message(msg, test_case_name)

        if self.args.save_hacc:
            print("Saving hacc!")
            pickle.dump(hacc, open("hacc/" + test_case_name, "wb"))
        print('Test Acc {:.4f} + {:.4f}'.format(m, pm))
Ejemplo n.º 11
0
    def __init__(self, args):
        param = configs.__dict__[args.config]()
        args.shot = param.shot
        args.test = param.test
        args.debug = param.debug
        args.deconfound = param.deconfound
        args.meta_label = param.meta_label
        args.init_weights = param.init_weights
        self.test_iter = param.test_iter
        args.param = param
        pprint(vars(args))

        # Set the folder to save the records and checkpoints
        log_base_dir = '/data2/yuezhongqi/Model/mtl/logs/'
        if not osp.exists(log_base_dir):
            os.mkdir(log_base_dir)
        meta_base_dir = osp.join(log_base_dir, 'meta')
        if not osp.exists(meta_base_dir):
            os.mkdir(meta_base_dir)
        save_path1 = '_'.join([args.dataset, args.model_type, 'MTL'])
        save_path2 = 'shot' + str(args.shot) + '_way' + str(args.way) + '_query' + str(args.train_query) + \
            '_step' + str(args.step_size) + '_gamma' + str(args.gamma) + '_lr1' + str(args.meta_lr1) + '_lr2' + str(args.meta_lr2) + \
            '_batch' + str(args.num_batch) + '_maxepoch' + str(args.max_epoch) + \
            '_baselr' + str(args.base_lr) + '_updatestep' + str(args.update_step) + \
            '_stepsize' + str(args.step_size) + '_' + args.meta_label
        args.save_path = meta_base_dir + '/' + save_path1 + '_' + save_path2
        ensure_path(args.save_path)

        # Set args to be shareable in the class
        self.args = args

        # Load meta-train set
        self.trainset = Dataset('train',
                                self.args,
                                dataset=self.args.param.dataset,
                                train_aug=False)
        num_workers = 8
        if args.debug:
            num_workers = 0
        self.train_sampler = CategoriesSampler(
            self.trainset.label, self.args.num_batch, self.args.way,
            self.args.shot + self.args.train_query)
        self.train_loader = DataLoader(dataset=self.trainset,
                                       batch_sampler=self.train_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)

        # Load meta-val set
        self.valset = Dataset('val',
                              self.args,
                              dataset=self.args.param.dataset,
                              train_aug=False)
        self.val_sampler = CategoriesSampler(
            self.valset.label, self.test_iter, self.args.way,
            self.args.shot + self.args.val_query)
        self.val_loader = DataLoader(dataset=self.valset,
                                     batch_sampler=self.val_sampler,
                                     num_workers=num_workers,
                                     pin_memory=True)

        # Build meta-transfer learning model
        self.model = MtlLearner(self.args)

        # load pretrained model without FC classifier
        self.model.load_pretrain_weight(self.args.init_weights)
        '''
        self.model_dict = self.model.state_dict()
        if self.args.init_weights is not None:
            pretrained_dict = torch.load(self.args.init_weights)['params']
        else:
            pre_base_dir = osp.join(log_base_dir, 'pre')
            pre_save_path1 = '_'.join([args.dataset, args.model_type])
            pre_save_path2 = 'batchsize' + str(args.pre_batch_size) + '_lr' + str(args.pre_lr) + '_gamma' + str(args.pre_gamma) + '_step' + \
                str(args.pre_step_size) + '_maxepoch' + str(args.pre_max_epoch)
            pre_save_path = pre_base_dir + '/' + pre_save_path1 + '_' + pre_save_path2
            pretrained_dict = torch.load(osp.join(pre_save_path, 'max_acc.pth'))['params']
        pretrained_dict = {'encoder.'+k: v for k, v in pretrained_dict.items()}
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in self.model_dict}
        print(pretrained_dict.keys())
        self.model_dict.update(pretrained_dict)
        self.model.load_state_dict(self.model_dict)
        '''

        # Set model to GPU
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.model = self.model.cuda()
            if self.args.param.model == "wideres":
                print("Using Parallel")
                self.model.encoder = torch.nn.DataParallel(
                    self.model.encoder).cuda()

        # Set optimizer
        self.optimizer = torch.optim.Adam(
            [{
                'params':
                filter(lambda p: p.requires_grad,
                       self.model.encoder.parameters())
            }, {
                'params': self.model.base_learner.parameters(),
                'lr': self.args.meta_lr2
            }],
            lr=self.args.meta_lr1)
        # Set learning rate scheduler
        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
            self.optimizer,
            step_size=self.args.step_size,
            gamma=self.args.gamma)

        if not self.args.deconfound:
            self.criterion = torch.nn.CrossEntropyLoss().cuda()
        else:
            self.criterion = torch.nn.NLLLoss().cuda()

        # Enable evaluation with Cross
        if args.cross:
            args.param.dataset = "cross"
Ejemplo n.º 12
0
    def eval(self, gradcam=False, rise=False, test_on_val=False):
        """The function for the meta-eval phase."""
        # Load the logs
        if os.path.exists(osp.join(self.args.save_path, 'trlog')):
            trlog = torch.load(osp.join(self.args.save_path, 'trlog'))
        else:
            trlog = None

        torch.manual_seed(1)
        np.random.seed(1)
        # Load meta-test set
        test_set = Dataset('val' if test_on_val else 'test', self.args)
        sampler = CategoriesSampler(test_set.label, 600, self.args.way,
                                    self.args.shot + self.args.val_query)
        loader = DataLoader(test_set,
                            batch_sampler=sampler,
                            num_workers=8,
                            pin_memory=True)

        # Set test accuracy recorder
        test_acc_record = np.zeros((600, ))

        # Load model for meta-test phase
        if self.args.eval_weights is not None:
            weights = self.addOrRemoveModule(
                self.model,
                torch.load(self.args.eval_weights)['params'])
            self.model.load_state_dict(weights)
        else:
            self.model.load_state_dict(
                torch.load(osp.join(self.args.save_path,
                                    'max_acc' + '.pth'))['params'])
        # Set model to eval mode
        self.model.eval()

        # Set accuracy averager
        ave_acc = Averager()

        # Generate labels
        label = torch.arange(self.args.way).repeat(self.args.val_query)
        if torch.cuda.is_available():
            label = label.type(torch.cuda.LongTensor)
        else:
            label = label.type(torch.LongTensor)
        label_shot = torch.arange(self.args.way).repeat(self.args.shot)
        if torch.cuda.is_available():
            label_shot = label_shot.type(torch.cuda.LongTensor)
        else:
            label_shot = label_shot.type(torch.LongTensor)

        if gradcam:
            self.model.layer3 = self.model.encoder.layer3
            model_dict = dict(type="resnet",
                              arch=self.model,
                              layer_name='layer3')
            grad_cam = GradCAM(model_dict, True)
            grad_cam_pp = GradCAMpp(model_dict, True)
            self.model.features = self.model.encoder
            guided = GuidedBackprop(self.model)
        if rise:
            self.model.layer3 = self.model.encoder.layer3
            score_mod = ScoreCam(self.model)

        # Start meta-test
        for i, batch in enumerate(loader, 1):
            if torch.cuda.is_available():
                data, _ = [_.cuda() for _ in batch]
            else:
                data = batch[0]
            k = self.args.way * self.args.shot
            data_shot, data_query = data[:k], data[k:]

            if i % 5 == 0:
                suff = "_val" if test_on_val else ""

                if self.args.rep_vec or self.args.cross_att:
                    print('batch {}: {:.2f}({:.2f})'.format(
                        i,
                        ave_acc.item() * 100, acc * 100))

                    if self.args.cross_att:
                        label_one_hot = self.one_hot(label).to(label.device)
                        _, _, logits, simMapQuer, simMapShot, normQuer, normShot = self.model(
                            (data_shot, label_shot, data_query),
                            ytest=label_one_hot,
                            retSimMap=True)
                    else:
                        logits, simMapQuer, simMapShot, normQuer, normShot, fast_weights = self.model(
                            (data_shot, label_shot, data_query),
                            retSimMap=True)

                    torch.save(
                        simMapQuer,
                        "../results/{}/{}_simMapQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        simMapShot,
                        "../results/{}/{}_simMapShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        data_query, "../results/{}/{}_dataQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        data_shot, "../results/{}/{}_dataShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        normQuer, "../results/{}/{}_normQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        normShot, "../results/{}/{}_normShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                else:
                    logits, normQuer, normShot, fast_weights = self.model(
                        (data_shot, label_shot, data_query),
                        retFastW=True,
                        retNorm=True)
                    torch.save(
                        normQuer, "../results/{}/{}_normQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        normShot, "../results/{}/{}_normShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))

                if gradcam:
                    print("Saving gradmaps", i)
                    allMasks, allMasks_pp, allMaps = [], [], []
                    for l in range(len(data_query)):
                        allMasks.append(
                            grad_cam(data_query[l:l + 1], fast_weights, None))
                        allMasks_pp.append(
                            grad_cam_pp(data_query[l:l + 1], fast_weights,
                                        None))
                        allMaps.append(
                            guided.generate_gradients(data_query[l:l + 1],
                                                      fast_weights))
                    allMasks = torch.cat(allMasks, dim=0)
                    allMasks_pp = torch.cat(allMasks_pp, dim=0)
                    allMaps = torch.cat(allMaps, dim=0)

                    torch.save(
                        allMasks, "../results/{}/{}_gradcamQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        allMasks_pp,
                        "../results/{}/{}_gradcamppQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        allMaps, "../results/{}/{}_guidedQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))

                if rise:
                    print("Saving risemaps", i)
                    allScore = []
                    for l in range(len(data_query)):
                        allScore.append(
                            score_mod(data_query[l:l + 1], fast_weights))

            else:
                if self.args.cross_att:
                    label_one_hot = self.one_hot(label).to(label.device)
                    _, _, logits = self.model(
                        (data_shot, label_shot, data_query),
                        ytest=label_one_hot)
                else:
                    logits = self.model((data_shot, label_shot, data_query))

            acc = count_acc(logits, label)
            ave_acc.add(acc)
            test_acc_record[i - 1] = acc

        # Calculate the confidence interval, update the logs
        m, pm = compute_confidence_interval(test_acc_record)
        if trlog is not None:
            print('Val Best Epoch {}, Acc {:.4f}, Test Acc {:.4f}'.format(
                trlog['max_acc_epoch'], trlog['max_acc'], ave_acc.item()))
        print('Test Acc {:.4f} + {:.4f}'.format(m, pm))

        return m
Ejemplo n.º 13
0
    def __init__(self, args):
        # Set the folder to save the records and checkpoints
        log_base_dir = './logs/'
        if not osp.exists(log_base_dir):
            os.mkdir(log_base_dir)
        meta_base_dir = osp.join(log_base_dir, 'meta')
        if not osp.exists(meta_base_dir):
            os.mkdir(meta_base_dir)
        save_path1 = '_'.join([args.dataset, args.model_type, 'MTL'])
        save_path2 = 'shot' + str(args.shot) + '_way' + str(args.way) + '_query' + str(args.train_query) + \
            '_step' + str(args.step_size) + '_gamma' + str(args.gamma) + '_lr1' + str(args.meta_lr1) + '_lr2' + str(args.meta_lr2) + \
            '_batch' + str(args.num_batch) + '_maxepoch' + str(args.max_epoch) + \
            '_baselr' + str(args.base_lr) + '_updatestep' + str(args.update_step) + \
            '_stepsize' + str(args.step_size) + '_' + args.meta_label
        args.save_path = meta_base_dir + '/' + save_path1 + '_' + save_path2
        ensure_path(args.save_path)

        # Set args to be shareable in the class
        self.args = args

        # Load meta-train set
        self.trainset = Dataset('train', self.args)
        self.train_sampler = CategoriesSampler(
            self.trainset.label, self.args.num_batch, self.args.way,
            self.args.shot + self.args.train_query)
        self.train_loader = DataLoader(dataset=self.trainset,
                                       batch_sampler=self.train_sampler,
                                       num_workers=args.num_workers,
                                       pin_memory=True)

        # Load meta-val set
        self.valset = Dataset('val', self.args)
        self.val_sampler = CategoriesSampler(
            self.valset.label, 600, self.args.way,
            self.args.shot + self.args.val_query)
        self.val_loader = DataLoader(dataset=self.valset,
                                     batch_sampler=self.val_sampler,
                                     num_workers=args.num_workers,
                                     pin_memory=True)

        # Build meta-transfer learning model
        self.model = MtlLearner(self.args,res="high" if (self.args.distill_id or self.args.high_res) else "low",multi_gpu=len(args.gpu.split(","))>1,\
                                crossAtt=self.args.cross_att)

        if self.args.distill_id:
            #self.teacher = MtlLearner(self.args,res="low")
            #self.teacher.load_state_dict(torch.load(args.distill_id)["params"])

            self.teacher = MtlLearner(self.args,
                                      res="low",
                                      repVecNb=self.args.nb_parts_teach,
                                      multi_gpu=len(args.gpu.split(",")) > 1)
            bestTeach = "../models/{}/meta_{}_trial{}_max_acc.pth".format(
                self.args.exp_id, self.args.distill_id,
                self.args.best_trial_teach - 1)
            self.teacher.load_state_dict(torch.load(bestTeach)["params"])

        # Set optimizer
        self.optimizer = torch.optim.Adam([{'params': filter(lambda p: p.requires_grad, self.model.encoder.parameters())}, \
            {'params': self.model.base_learner.parameters(), 'lr': self.args.meta_lr2}], lr=self.args.meta_lr1)
        # Set learning rate scheduler
        self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
            self.optimizer,
            step_size=self.args.step_size,
            gamma=self.args.gamma)

        # load pretrained model without FC classifier
        self.model_dict = self.model.state_dict()
        if self.args.init_weights is not None:
            pretrained_dict = torch.load(self.args.init_weights)['params']

            pretrained_dict = {
                'encoder.' + k: v
                for k, v in pretrained_dict.items()
            }
            pretrained_dict = {
                k: v
                for k, v in pretrained_dict.items() if k in self.model_dict
            }

            self.model_dict.update(pretrained_dict)
            self.model.load_state_dict(self.model_dict)

        # Set model to GPU
        if torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            self.model = self.model.cuda()

            if self.args.distill_id:
                self.teacher = self.teacher.cuda()

        if self.args.cross_att:
            self.criterion = crossAttModule.CrossEntropyLoss()