Ejemplo n.º 1
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ""
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2394.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth"
    weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/000_thumos_29.13_save_model_Frame_wise_accuracy/checkpoint_best_cas.pth"

    epoch = 801
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    evaluate_save_for_post_process(cfg, val_loader, model, epoch)
Ejemplo n.º 2
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    cfg.BASIC.ROOT_DIR = os.path.join(os.path.dirname(__file__), '..')

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    model.cuda()

    if not os.path.exists(args.res_dir):
        os.makedirs(args.res_dir)

    model = load_weights(model, args.weight_file)

    evaluate_vis_cas(cfg, val_loader, model, args.res_dir, args.is_minmax_norm)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2545.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth'
    # weight_file = ''
    weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_inv_0_save_model/checkpoint_best_cas_inv0_epoch69_0.2636.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_only_cas_save_model/checkpoint_best_cas_only_cas_epoch134_0.1957.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_individual_attention_2048k1_2048k1_2048k1_only_cam_svae_model/checkpoint_best_cas_only_cam_epoch96_0.1714.pth'
    res_dir = os.path.join(cfg.BASIC.CKPT_DIR, cfg.TEST.RESULT_DIR,
                           'vis/cas_gt_idx_minmax_norm_std')
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    epoch = 600
    output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(
        cfg, val_loader, model, epoch)
    evaluate_mAP(cfg, output_json_file_cas,
                 os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
                 cfg.BASIC.VERBOSE)
    evaluate_mAP(cfg, output_json_file_cam,
                 os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
                 cfg.BASIC.VERBOSE)

    is_minmax_norm = True
    evaluate_vis_cas_minmax_norm_std(cfg, val_loader, model, res_dir,
                                     is_minmax_norm)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model_cas = LocNet(cfg)
    # model.apply(weight_init)
    model_cam = LocNet(cfg)

    model_cas.cuda()
    model_cam.cuda()

    # weight_file = ""
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2394.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet13/anet13_same_as_anet12_seed1_epoch45_TOPK_K_R_0.6_LR_DECAY26_save_every_model/checkpoint_best_cas_epoch35.pth"
    weight_file_cas = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_only_cas_only_cam_separate_weight_save_model/checkpoint_best_cas_epoch75_0.2055.pth"

    weight_file_cam = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/thumos14/thumos_ablation_only_cas_only_cam_separate_weight_save_model/checkpoint_best_cam_epoch89_0.176.pth"
    from utils.utils import load_weights
    model_cas = load_weights(model_cas, weight_file_cas)
    model_cam = load_weights(model_cam, weight_file_cam)

    epoch = 911
    output_json_file_cas, test_acc_cas = evaluate_fuse_sequence(
        cfg, val_loader, model_cas, model_cam, epoch)
    # output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(
        cfg, output_json_file_cas,
        os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
        cfg.BASIC.VERBOSE)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ""
    weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2394.pth"
    # weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth"

    epoch = 801
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model,
                                                  epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(
        cfg, output_json_file_cas,
        os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
        cfg.BASIC.VERBOSE)
Ejemplo n.º 6
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet12/anet12_0.2350_cam_inv_1_seed7_epoch36_TOPK_K_R_0.25__save_model_LR_decay/anet12_checkpoint_best_cas_0.2394.pth'
    weight_file = "/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet13/anet13_same_as_anet12_seed1_epoch45_TOPK_K_R_0.6_LR_DECAY26_save_every_model/anet13_checkpoint_best_cas_epoch28_0.2178.pth"
    epoch = 603
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model,
                                                  epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(
        cfg, output_json_file_cas,
        os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
        cfg.BASIC.VERBOSE)
Ejemplo n.º 7
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)


    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False,
                            num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()


    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/thumos14_checkpoint_best_cas_epoch125_iou0.5__0.2928.pth'
    # weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet12_checkpoint_best_cas_epoch30_map_0.2545.pth'
    weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/0_NeurIPS2020_code_ok/results_and_model/anet13_checkpoint_best_cas_epoch35_map_0.2348.pth'
    res_dir = os.path.join(cfg.BASIC.CKPT_DIR, cfg.TEST.RESULT_DIR,'vis/cas_weight_gt_idx_iou_0.85_mul_instance')
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # epoch = 600
    # actions_json_file, _ = evaluate(cfg, val_loader, model, epoch)
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE), cfg.BASIC.VERBOSE)

    is_minmax_norm = True

    evaluate_vis_cas_select_specific(cfg, val_loader, model, res_dir, is_minmax_norm)
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    weight_file = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet12/anet12_no_inv_base_LR_0.0002_BATCH_128_save_model/checkpoint_best_cas_0.2243.pth'
    epoch = 600

    res_dir = '/disk3/zt/code/4_a/1_ECM_no_inv_drop/output/anet12/anet12_no_inv_base_LR_0.0002_BATCH_128_save_model/vis/cas_minmax_norm'
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)
    is_minmax_norm = True
    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    evaluate_vis_cas(cfg, val_loader, model, epoch, res_dir, is_minmax_norm)
Ejemplo n.º 9
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ''
    weight_file = '/disk/yangle/Short-Actions/ECM/output/thumos14/ECM_baseline/checkpoint_best_150.pth'
    res_dir = os.path.join(cfg.BASIC.CKPT_DIR, cfg.TEST.RESULT_DIR,
                           'vis/ECM_thumos_score')
    if not os.path.exists(res_dir):
        os.makedirs(res_dir)

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    epoch = 600
    # output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas = '/disk/yangle/Short-Actions/ECM/output/thumos14/ECM_baseline/vis/ecm.json'
    evaluate_mAP(cfg, output_json_file_cas,
                 os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE),
                 cfg.BASIC.VERBOSE)
Ejemplo n.º 10
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    # prepare_env(cfg)


    # dataloader
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False,
                            num_workers=cfg.BASIC.WORKERS, pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = ""
    weight_file = "/disk/yangle/Short-Actions/ECM/output/thumos14/ECM_baseline/checkpoint_best_150.pth"

    epoch = 601
    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # actions_json_file = evaluate(cfg, val_loader, model, epoch)
    #
    # evaluate_mAP(cfg, actions_json_file, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE))

    # output_json_file_cas, output_json_file_cam, test_acc_cas, test_acc_cam = evaluate(cfg, val_loader, model, epoch)
    output_json_file_cas, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
    if cfg.BASIC.VERBOSE:
        print('test_acc, cas %f' % (test_acc_cas))
    mAP, average_mAP = evaluate_mAP(cfg, output_json_file_cas, os.path.join(cfg.BASIC.CKPT_DIR, cfg.DATASET.GT_FILE), cfg.BASIC.VERBOSE)
Ejemplo n.º 11
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # log
    writer = SummaryWriter(
        log_dir=os.path.join(cfg.BASIC.CKPT_DIR, cfg.BASIC.LOG_DIR))

    # dataloader
    train_dset = WtalDataset(cfg, cfg.DATASET.TRAIN_SPLIT)
    train_loader = DataLoader(train_dset,
                              batch_size=cfg.TRAIN.BATCH_SIZE,
                              shuffle=True,
                              num_workers=cfg.BASIC.WORKERS,
                              pin_memory=cfg.BASIC.PIN_MEMORY)
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)
    # model.apply(weight_init)

    model.cuda()

    # weight_file = "/disk3/zt/code/actloc/thumos/17_CAS_CAM_fast_tuning/output/20class_seed_0_save_model/checkpoint_best_cas_0.2701.pth"
    weight_file = '/disk3/zt/code/actloc/thumos/20_0.2701_try/output/debug_save_epoch30/checkpoint_best_cas.pth'

    from utils.utils import load_weights
    model = load_weights(model, weight_file)

    # optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=cfg.TRAIN.LR,
                           betas=cfg.TRAIN.BETAS,
                           weight_decay=cfg.TRAIN.WEIGHT_DECAY)

    optimizer.load_state_dict(torch.load(weight_file)['optimizer'])

    # criterion
    criterion = BasNetLoss()

    for epoch in range(1, cfg.TRAIN.EPOCH_NUM + 1):
        print('Epoch: %d:' % epoch)
        loss_average_cas, loss_average_cam, loss_average_consistency, loss_average_norm, loss_average_cas_inv, loss_average_cam_inv = train(
            cfg, train_loader, model, optimizer, criterion)

        writer.add_scalar('train_loss/cas', loss_average_cas, epoch)
        writer.add_scalar('train_loss/cam', loss_average_cam, epoch)
        writer.add_scalar('train_loss/consistency', loss_average_consistency,
                          epoch)
        writer.add_scalar('train_loss/norm', loss_average_norm, epoch)
        writer.add_scalar('train_loss/cas_inv', loss_average_cas_inv, epoch)
        writer.add_scalar('train_loss/cam_inv', loss_average_cam_inv, epoch)
        if cfg.BASIC.VERBOSE:
            print(
                'loss: cas %f, cam %f, consistency %f, norm %f, cas_inv %f, cam_inv %f'
                % (loss_average_cas, loss_average_cam,
                   loss_average_consistency, loss_average_norm,
                   loss_average_cas_inv, loss_average_cam_inv))

        # decay learning rate
        if epoch in cfg.TRAIN.LR_DECAY_EPOCHS:
            decay_lr(optimizer, factor=cfg.TRAIN.LR_DECAY_FACTOR)

        if epoch % cfg.TEST.EVAL_INTERVAL == 0:
            _, _, test_acc_cas, test_acc_cam = evaluate(
                cfg, val_loader, model, epoch)
            if cfg.BASIC.VERBOSE:
                print('test_acc, cas %f, cam %f' %
                      (test_acc_cas, test_acc_cam))
            writer.add_scalar('test_acc/cas', test_acc_cas, epoch)
            writer.add_scalar('test_acc/cam', test_acc_cam, epoch)

    writer.close()
Ejemplo n.º 12
0
def main():
    args = args_parser()
    update_config(args.cfg)
    if cfg.BASIC.SHOW_CFG:
        pprint.pprint(cfg)
    # prepare running environment for the whole project
    prepare_env(cfg)

    # log
    writer = SummaryWriter(
        log_dir=os.path.join(cfg.BASIC.CKPT_DIR, cfg.BASIC.LOG_DIR))

    # dataloader
    train_dset = WtalDataset(cfg, cfg.DATASET.TRAIN_SPLIT)
    train_loader = DataLoader(train_dset,
                              batch_size=cfg.TRAIN.BATCH_SIZE,
                              shuffle=True,
                              num_workers=cfg.BASIC.WORKERS,
                              pin_memory=cfg.BASIC.PIN_MEMORY)
    val_dset = WtalDataset(cfg, cfg.DATASET.VAL_SPLIT)
    val_loader = DataLoader(val_dset,
                            batch_size=cfg.TEST.BATCH_SIZE,
                            shuffle=False,
                            num_workers=cfg.BASIC.WORKERS,
                            pin_memory=cfg.BASIC.PIN_MEMORY)

    # network
    model = LocNet(cfg)

    model.cuda()

    # optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=cfg.TRAIN.LR,
                           betas=cfg.TRAIN.BETAS,
                           weight_decay=cfg.TRAIN.WEIGHT_DECAY)
    # criterion
    criterion = BasNetLoss()

    for epoch in range(1, cfg.TRAIN.EPOCH_NUM + 1):
        print('Epoch: %d:' % epoch)
        loss_average_cas, loss_average_cam, loss_average_consistency, loss_average_norm, loss_average_cam_inv = train(
            cfg, train_loader, model, optimizer, criterion)

        writer.add_scalar('train_loss/cas', loss_average_cas, epoch)
        writer.add_scalar('train_loss/cam', loss_average_cam, epoch)
        writer.add_scalar('train_loss/consistency', loss_average_consistency,
                          epoch)
        writer.add_scalar('train_loss/norm', loss_average_norm, epoch)
        writer.add_scalar('train_loss/cam_inv', loss_average_cam_inv, epoch)
        if cfg.BASIC.VERBOSE:
            print(
                'loss: cas %f, cam %f, consistency %f, norm %f, cam_inv %f' %
                (loss_average_cas, loss_average_cam, loss_average_consistency,
                 loss_average_norm, loss_average_cam_inv))

        # decay learning rate
        if epoch in cfg.TRAIN.LR_DECAY_EPOCHS:
            decay_lr(optimizer, factor=cfg.TRAIN.LR_DECAY_FACTOR)

        if epoch % cfg.TEST.EVAL_INTERVAL == 0:
            _, test_acc_cas = evaluate(cfg, val_loader, model, epoch)
            if cfg.BASIC.VERBOSE:
                print('test_acc, cas %f' % (test_acc_cas))
            writer.add_scalar('test_acc/cas', test_acc_cas, epoch)

            save_best_model(cfg,
                            epoch=epoch,
                            model=model,
                            optimizer=optimizer,
                            name='cas')
    writer.close()