def anconvert(d, l, inpath): # print inpath path = '/home/peth/Databases/rPascal/features/caffe/queries/' finput = inpath + '.npy' check = True isfileaf = glob.glob("/home/peth/Databases/rPascal/features/nDCG/*.txt") isfilebf = glob.glob('/home/peth/Databases/rPascal/features/caffe/queries/*.npy') if len(isfileaf) == len(isfilebf): check = False return tosort(inpath, l) if check and len(isfileaf) < len(isfilebf): for fname in sorted(os.listdir(path)): if finput == fname: file = open("/home/peth/Databases/rPascal/features/nDCG/" + inpath + ".txt", 'w') for key in d: # print key if inpath == key: value = d[key] for element in value: dist = str(dist_cal(key, element)) ref = str(element).rstrip(".jpg") file.write(ref) file.write(" ") file.write(dist) file.write("\n") file.close() print 'All reference and distance of ' + str(inpath) + " is written" return tosort(inpath, l)
def convert(d): print "Processing all images in dataset... " dict = OrderedDict() dict2 = OrderedDict() for key in d: value = d[key] min_dist = dist_cal(key, value[0]) min_y = str(value[0]) for element in value: dist = dist_cal(key, element) if dist <= min_dist: query = str(key) min_dist = dist min_y = str(element).rstrip(".jpg") print "Processing query: " + (query) + " <=> Most similar image is: " + (min_y) + " <=> Distance is: " + str(min_dist) dict[query] = min_y dict2[query] = str(min_dist) # print dict print "Dataset processing finished... " savepair(dict) savedist(dict2) print "Dataset successfully created. "