Ejemplo n.º 1
0
def test(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)
    model = Model(opt.imgH,
                  opt.imgW,
                  opt.input_channel,
                  opt.output_channel,
                  opt.hidden_size,
                  opt.num_class,
                  opt.batch_max_length,
                  Transformation=opt.Transformation,
                  FeatureExtraction=opt.FeatureExtraction,
                  SequenceModeling=opt.SequenceModeling,
                  Prediction=opt.Prediction)
    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel,
          opt.output_channel, opt.hidden_size, opt.num_class,
          opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).cuda()

    # load model
    if opt.saved_model != '':
        print('loading pretrained model from %s' % opt.saved_model)
        model.load_state_dict(torch.load(opt.saved_model))
        opt.name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.name}/')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = CTCLoss(reduction='sum')
    else:
        criterion = torch.nn.CrossEntropyLoss(
            ignore_index=0).cuda()  # ignore [GO] token = ignore index 0
    """ evaluation """
    model.eval()
    if opt.benchmark_all_eval:  # evaluation with 10 benchmark evaluation datasets
        benchmark_all_eval(model, criterion, converter, opt)
    else:
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)
        eval_data = hierarchical_dataset(root=opt.eval_data, opt=opt)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data,
            batch_size=opt.batch_size,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation,
            pin_memory=True)
        _, accuracy_by_best_model, _, _, _, _, _ = validation(
            model, criterion, evaluation_loader, converter, opt)

        print(accuracy_by_best_model)
        with open('./result/{0}/log_evaluation.txt'.format(opt.name),
                  'a') as log:
            log.write(str(accuracy_by_best_model) + '\n')
Ejemplo n.º 2
0
    def dataloader(self, opt):
        src_train_data = opt.src_train_data
        src_select_data = opt.src_select_data
        src_batch_ratio = opt.src_batch_ratio
        src_train_dataset = Batch_Balanced_Dataset(opt, src_train_data,
                                                   src_select_data,
                                                   src_batch_ratio)

        tar_train_data = opt.tar_train_data
        tar_select_data = opt.tar_select_data
        tar_batch_ratio = opt.tar_batch_ratio
        tar_train_dataset = Batch_Balanced_Dataset(opt, tar_train_data,
                                                   tar_select_data,
                                                   tar_batch_ratio)

        AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                          imgW=opt.imgW,
                                          keep_ratio_with_pad=opt.PAD)

        valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
        valid_loader = torch.utils.data.DataLoader(
            valid_dataset,
            batch_size=opt.batch_size,
            shuffle=
            True,  # 'True' to check training progress with validation function.
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_valid,
            pin_memory=True)
        return src_train_dataset, tar_train_dataset, valid_loader
Ejemplo n.º 3
0
def test(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    elif 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    elif 'Transformer' in opt.Prediction or 'Test' in opt.Prediction or 'Transformer' in opt.SequenceModeling:
        converter = TransformerLabelConverter(opt.character)

    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.experiment_name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.experiment_name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.experiment_name}/')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 2
    """ evaluation """
    model.eval()
    with torch.no_grad():
        if opt.benchmark_all_eval:  # evaluation with 10 benchmark evaluation datasets
            benchmark_all_eval(model, criterion, converter, opt)
        else:
            log = open(f'./result/{opt.experiment_name}/log_evaluation.txt',
                       'a')
            AlignCollate_evaluation = AlignCollate(imgH=opt.imgH,
                                                   imgW=opt.imgW,
                                                   keep_ratio_with_pad=opt.PAD)
            eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data,
                                                            opt=opt)
            evaluation_loader = torch.utils.data.DataLoader(
                eval_data,
                batch_size=opt.batch_size,
                shuffle=False,
                num_workers=int(opt.workers),
                collate_fn=AlignCollate_evaluation,
                pin_memory=True)
            _, accuracy_by_best_model, _, _, _, _, _, _ = validation(
                model, criterion, evaluation_loader, converter, opt)
            log.write(eval_data_log)
            print(f'{accuracy_by_best_model:0.3f}')
            log.write(f'{accuracy_by_best_model:0.3f}\n')
            log.close()
Ejemplo n.º 4
0
def dataset_preparation(opt):
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130
    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)
    log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    return train_dataset, valid_loader
Ejemplo n.º 5
0
def benchmark_all_eval(model, criterion, converter, opt, calculate_infer_time=False):
    """ evaluation with 10 benchmark evaluation datasets """
    # The evaluation datasets, dataset order is same with Table 1 in our paper.
    eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
                      'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80']

    # # To easily compute the total accuracy of our paper.
    # eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_867', 
    #                   'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']

    if calculate_infer_time:
        evaluation_batch_size = 1  # batch_size should be 1 to calculate the GPU inference time per image.
    else:
        evaluation_batch_size = opt.batch_size

    list_accuracy = []
    total_forward_time = 0
    total_evaluation_data_number = 0
    total_correct_number = 0
    log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a')
    dashed_line = '-' * 80
    print(dashed_line)
    log.write(dashed_line + '\n')
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=evaluation_batch_size,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation, pin_memory=True)

        _, accuracy_by_best_model, norm_ED_by_best_model, _, _, _, infer_time, length_of_data = validation(
            model, criterion, evaluation_loader, converter, opt)
        list_accuracy.append(f'{accuracy_by_best_model:0.3f}')
        total_forward_time += infer_time
        total_evaluation_data_number += len(eval_data)
        total_correct_number += accuracy_by_best_model * length_of_data
        log.write(eval_data_log)
        print(f'Acc {accuracy_by_best_model:0.3f}\t normalized_ED {norm_ED_by_best_model:0.3f}')
        log.write(f'Acc {accuracy_by_best_model:0.3f}\t normalized_ED {norm_ED_by_best_model:0.3f}\n')
        print(dashed_line)
        log.write(dashed_line + '\n')

    averaged_forward_time = total_forward_time / total_evaluation_data_number * 1000
    total_accuracy = total_correct_number / total_evaluation_data_number
    params_num = sum([np.prod(p.size()) for p in model.parameters()])

    evaluation_log = 'accuracy: '
    for name, accuracy in zip(eval_data_list, list_accuracy):
        evaluation_log += f'{name}: {accuracy}\t'
    evaluation_log += f'total_accuracy: {total_accuracy:0.3f}\t'
    evaluation_log += f'averaged_infer_time: {averaged_forward_time:0.3f}\t# parameters: {params_num/1e6:0.3f}'
    print(evaluation_log)
    log.write(evaluation_log + '\n')
    log.close()

    return None
def benchmark_all_eval(model,
                       criterion,
                       converter,
                       opt,
                       calculate_infer_time=False):
    """ evaluation with 10 benchmark evaluation datasets """
    list_accuracy = []
    Total_forward_time = 0
    Total_evaluation_data_number = 0
    # The evaluation datasets, dataset order is same with Table 1 in our paper.
    eval_data_list = [
        'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015',
        'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    ]

    if calculate_infer_time:
        evaluation_batch_size = 1  # batch_size should be 1 to calculate the GPU inference time per image.
    else:
        evaluation_batch_size = opt.batch_size

    print('-' * 80)
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW)
        eval_data = hierarchical_dataset(root=eval_data_path, opt=opt)
        print('-' * 80)
        Total_evaluation_data_number += len(eval_data)
        evaluation_loader = torch.utils.data.DataLoader(
            eval_data,
            batch_size=evaluation_batch_size,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_evaluation,
            pin_memory=True)

        _, accuracy_by_best_model, _, _, _, infer_time = validation(
            model, criterion, evaluation_loader, converter, opt)
        Total_forward_time += infer_time
        list_accuracy.append(f'{accuracy_by_best_model:0.3f}')

    averaged_forward_time = Total_forward_time / Total_evaluation_data_number * 1000
    params_num = sum([np.prod(p.size()) for p in model.parameters()])

    evaluation_log = 'accuracy: '
    for name, accuracy in zip(eval_data_list, list_accuracy):
        evaluation_log += f'{name}: {accuracy}\t'
    evaluation_log += f'averaged_infer_time: {averaged_forward_time:0.3f}, # parameters: {params_num/1e6:0.3f}'
    print(evaluation_log)
    with open(f'./result/{opt.experiment_name}/log_all_evaluation.txt',
              'a') as log:
        log.write(evaluation_log + '\n')

    return None
def test(opt):
    """ model configuration """
    converter, model = model_configuration(opt)
    opt.experiment_name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.experiment_name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.experiment_name}/')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    """ evaluation """
    model.eval()
    with torch.no_grad():
        if opt.benchmark_all_eval:  # evaluation with 10 benchmark evaluation datasets
            benchmark_all_eval(model, criterion, converter, opt)
        else:
            log = open(f'./result/{opt.experiment_name}/log_evaluation.txt',
                       'a')
            AlignCollate_evaluation = AlignCollate(imgH=opt.imgH,
                                                   imgW=opt.imgW,
                                                   keep_ratio_with_pad=opt.PAD)
            eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data,
                                                            opt=opt)
            evaluation_loader = torch.utils.data.DataLoader(
                eval_data,
                batch_size=opt.batch_size,
                shuffle=False,
                num_workers=int(opt.workers),
                collate_fn=AlignCollate_evaluation,
                pin_memory=True)
            _, accuracy_by_best_model, _, _, _, _, _, _ = validation(
                model, criterion, evaluation_loader, converter, opt)
            log.write(eval_data_log)
            print(f'{accuracy_by_best_model:0.3f}')
            log.write(f'{accuracy_by_best_model:0.3f}\n')
            log.close()
Ejemplo n.º 8
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open('./saved_models/{}/log_dataset.txt'.format(opt.experiment_name), 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """部分参数初始化"""
    learning_rate = 1e-4
    label2num, num2label = label_num('all_labels.txt')
    num_classes = len(label2num)
    print('训练类别数:{}'.format(num_classes))
    print('训练集标签列表:\n{}'.format(num2label.values()))
    print('-' * 80)

    class VGGNet(nn.Module):
        def __init__(self, num_classes=num_classes):
            super(VGGNet, self).__init__()
            net = models.vgg16(pretrained=True)
            net.classifier = nn.Sequential()
            self.features = net
            self.classifier = nn.Sequential(
                    nn.Linear(512 * 7 * 7, 512),
                    nn.ReLU(True),
                    nn.Dropout(),
                    nn.Linear(512, 128),
                    nn.ReLU(True),
                    nn.Dropout(),
                    nn.Linear(128, num_classes),
            )

        def forward(self, x):
            x = self.features(x)
            x = x.view(x.size(0), -1)
            x = self.classifier(x)
            return x

    #--------------------训练过程---------------------------------
    model = VGGNet()
    if torch.cuda.is_available():
        model.cuda()
    params = [{'params': md.parameters()} for md in model.children()
              if md in [model.classifier]]
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    loss_func = nn.CrossEntropyLoss()

    Loss_list = []
    Accuracy_list = []


    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print('continue to train, start_iter: {}'.format(start_iter))
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter
    num2label = opt.num2label
    while(True):
        # train part
        # training-----------------------------
        image_tensors, labels = train_dataset.get_batch()
        batch_x = image_tensors.to(device)
        #labels = [num2label[x] for x in labels]#将汉字转换回标签
        batch_y = torch.from_numpy(np.asarray(labels, dtype=np.int8)).to(device)
        train_loss = 0.
        train_acc = 0.

        out = model(batch_x)
        loss = loss_func(out, batch_y.long())
        train_loss += loss.item()
        pred = torch.max(out, 1)[1]
        train_correct = (pred == batch_y).sum()
        train_acc += train_correct.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (i + 1) % 0.5e+2 == 0:
            print('Step{}:'.format(i + 1))
            print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
                labels)), train_acc / (len(labels))))
        # save model per 1e+5 iter.
        if (i + 1) % 5e+2 == 0:
            torch.save(
                model.state_dict(), './saved_models/{}/iter_{}.pth'.format(opt.experiment_name, i+1))

        if i == opt.num_iter:
            torch.save(
                model.state_dict(), './saved_models/{}/iter_{}.pth'.format(opt.experiment_name, i+1))
            print('end the training')
            break
        i += 1
        
        # evaluation--------------------------------
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            # for log
            model.eval()
            eval_loss = 0.
            eval_acc = 0.
            length_of_data = 0
            for image_tensors, labels in valid_loader:
                batch_x = image_tensors.to(device)
                batch_y = torch.from_numpy(np.asarray(labels, dtype=np.int8)).to(device)
                length_of_data += len(labels)
                #batch_x, batch_y = Variable(batch_x, volatile=True).cuda(), Variable(batch_y, volatile=True).cuda()
                out = model(batch_x)
                loss = loss_func(out, batch_y.long())
                eval_loss += loss.item()
                pred = torch.max(out, 1)[1]
                num_correct = (pred == batch_y).sum()
                eval_acc += num_correct.item()
            print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (length_of_data), eval_acc / (length_of_data)))
                
            Loss_list.append(eval_loss / (len(labels)))
            Accuracy_list.append(100 * eval_acc / (len(labels)))
        
    x1 = np.arange(0, 100).reshape(1,-1)
    x2 = np.arange(0, 100).reshape(1,-1)
    y1 = np.array(Accuracy_list).reshape(1,-1)
    y2 = np.array(Loss_list).reshape(1,-1)
    plt.figure()
    plt.subplot(2, 1, 1)
    plt.plot(x1, y1, 'o-')
    plt.title('Test accuracy vs. epoches')
    plt.ylabel('Test accuracy')
    plt.subplot(2, 1, 2)
    plt.plot(x2, y2, '.-')
    plt.xlabel('Test loss vs. epoches')
    plt.ylabel('Test loss')
    plt.show()
    plt.savefig("accuracy_loss.jpg")
    sys.exit()
Ejemplo n.º 9
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(),
                f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
def train(opt):
    plotDir = os.path.join(opt.exp_dir,opt.exp_name,'plots')
    if not os.path.exists(plotDir):
        os.makedirs(plotDir)
    
    lib.print_model_settings(locals().copy())

    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #considering the real images for discriminator
    opt.batch_size = opt.batch_size*2

    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    
    model = AdaINGen(opt)
    ocrModel = Model(opt)
    disModel = MsImageDisV1(opt)
    
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    
    #  weight initialization
    for currModel in [model, ocrModel, disModel]:
        for name, param in currModel.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue
    
    
    # data parallel for multi-GPU
    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    if not opt.ocrFixed:
        ocrModel.train()
    else:
        ocrModel.module.Transformation.eval()
        ocrModel.module.FeatureExtraction.eval()
        ocrModel.module.AdaptiveAvgPool.eval()
        # ocrModel.module.SequenceModeling.eval()
        ocrModel.module.Prediction.eval()

    model = torch.nn.DataParallel(model).to(device)
    model.train()
    
    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    if opt.modelFolderFlag:
        
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]
        
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_dis.pth")))>0:
            opt.saved_dis_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_dis.pth"))[-1]

    #loading pre-trained model
    if opt.saved_ocr_model != '' and opt.saved_ocr_model != 'None':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        if opt.FT:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model), strict=False)
        else:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model))
    print("OCRModel:")
    print(ocrModel)

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_synth_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_synth_model))
    print("SynthModel:")
    print(model)

    if opt.saved_dis_model != '' and opt.saved_dis_model != 'None':
        print(f'loading pretrained discriminator model from {opt.saved_dis_model}')
        if opt.FT:
            disModel.load_state_dict(torch.load(opt.saved_dis_model), strict=False)
        else:
            disModel.load_state_dict(torch.load(opt.saved_dis_model))
    print("DisModel:")
    print(disModel)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    
    recCriterion = torch.nn.L1Loss()
    styleRecCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg_ocr = Averager()
    loss_avg = Averager()
    loss_avg_dis = Averager()

    loss_avg_ocrRecon_1 = Averager()
    loss_avg_ocrRecon_2 = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_styRecon = Averager()

    ##---------------------------------------##
    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optim=='adam':
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("SynthOptimizer:")
    print(optimizer)
    

    #filter parameters for OCR training
    ocr_filtered_parameters = []
    ocr_params_num = []
    for p in filter(lambda p: p.requires_grad, ocrModel.parameters()):
        ocr_filtered_parameters.append(p)
        ocr_params_num.append(np.prod(p.size()))
    print('OCR Trainable params num : ', sum(ocr_params_num))


    # setup optimizer
    if opt.optim=='adam':
        ocr_optimizer = optim.Adam(ocr_filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        ocr_optimizer = optim.Adadelta(ocr_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("OCROptimizer:")
    print(ocr_optimizer)

    #filter parameters for OCR training
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.optim=='adam':
        dis_optimizer = optim.Adam(dis_filtered_parameters, lr=opt.lr, betas=(opt.beta1, opt.beta2), weight_decay=opt.weight_decay)
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay)
    print("DisOptimizer:")
    print(dis_optimizer)
    ##---------------------------------------##

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    ocr_scheduler = get_scheduler(ocr_optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    best_accuracy_ocr = -1
    best_norm_ED_ocr = -1
    iteration = start_iter
    cntr=0


    while(True):
        # train part
        
        if opt.lr_policy !="None":
            scheduler.step()
            ocr_scheduler.step()
            dis_scheduler.step()
            
        image_tensors_all, labels_1_all, labels_2_all = train_dataset.get_batch()
        
        # ## comment
        # pdb.set_trace()
        # for imgCntr in range(image_tensors.shape[0]):
        #     save_image(tensor2im(image_tensors[imgCntr]),'temp/'+str(imgCntr)+'.png')
        # pdb.set_trace()
        # ###
        # print(cntr)
        cntr+=1
        disCnt = int(image_tensors_all.size(0)/2)
        image_tensors, image_tensors_real, labels_gt, labels_2 = image_tensors_all[:disCnt], image_tensors_all[disCnt:disCnt+disCnt], labels_1_all[:disCnt], labels_2_all[:disCnt]

        image = image_tensors.to(device)
        image_real = image_tensors_real.to(device)
        batch_size = image.size(0)

        
        ##-----------------------------------##
        #generate text(labels) from ocr.forward
        if opt.ocrFixed:
            # ocrModel.eval()
            length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
            text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
            
            if 'CTC' in opt.Prediction:
                preds = ocrModel(image, text_for_pred)
                preds = preds[:, :text_for_loss.shape[1] - 1, :]
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                _, preds_index = preds.max(2)
                labels_1 = converter.decode(preds_index.data, preds_size.data)
            else:
                preds = ocrModel(image, text_for_pred, is_train=False)
                _, preds_index = preds.max(2)
                labels_1 = converter.decode(preds_index, length_for_pred)
                for idx, pred in enumerate(labels_1):
                    pred_EOS = pred.find('[s]')
                    labels_1[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
            # ocrModel.train()
        else:
            labels_1 = labels_gt
        
        ##-----------------------------------##

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        
        #forward pass from style and word generator
        images_recon_1, images_recon_2, style = model(image, text_1, text_2)

        if 'CTC' in opt.Prediction:
            
            if not opt.ocrFixed:
                #ocr training with orig image
                preds_ocr = ocrModel(image, text_1)
                preds_size_ocr = torch.IntTensor([preds_ocr.size(1)] * batch_size)
                preds_ocr = preds_ocr.log_softmax(2).permute(1, 0, 2)

                ocrCost_train = ocrCriterion(preds_ocr, text_1, preds_size_ocr, length_1)

            
            #content loss for reconstructed images
            preds_1 = ocrModel(images_recon_1, text_1)
            preds_size_1 = torch.IntTensor([preds_1.size(1)] * batch_size)
            preds_1 = preds_1.log_softmax(2).permute(1, 0, 2)

            preds_2 = ocrModel(images_recon_2, text_2)
            preds_size_2 = torch.IntTensor([preds_2.size(1)] * batch_size)
            preds_2 = preds_2.log_softmax(2).permute(1, 0, 2)
            ocrCost_1 = ocrCriterion(preds_1, text_1, preds_size_1, length_1)
            ocrCost_2 = ocrCriterion(preds_2, text_2, preds_size_2, length_2)
            # ocrCost = 0.5*( ocrCost_1 + ocrCost_2 )

        else:
            if not opt.ocrFixed:
                #ocr training with orig image
                preds_ocr = ocrModel(image, text_1[:, :-1])  # align with Attention.forward
                target_ocr = text_1[:, 1:]  # without [GO] Symbol

                ocrCost_train = ocrCriterion(preds_ocr.view(-1, preds_ocr.shape[-1]), target_ocr.contiguous().view(-1))

            #content loss for reconstructed images
            preds_1 = ocrModel(images_recon_1, text_1[:, :-1], is_train=False)  # align with Attention.forward
            target_1 = text_1[:, 1:]  # without [GO] Symbol

            preds_2 = ocrModel(images_recon_2, text_2[:, :-1], is_train=False)  # align with Attention.forward
            target_2 = text_2[:, 1:]  # without [GO] Symbol

            ocrCost_1 = ocrCriterion(preds_1.view(-1, preds_1.shape[-1]), target_1.contiguous().view(-1))
            ocrCost_2 = ocrCriterion(preds_2.view(-1, preds_2.shape[-1]), target_2.contiguous().view(-1))
            # ocrCost = 0.5*(ocrCost_1+ocrCost_2)
        
        if not opt.ocrFixed:
            #training OCR
            ocrModel.zero_grad()
            ocrCost_train.backward()
            # torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
            ocr_optimizer.step()
            #if ocr is fixed; ignore this loss
            loss_avg_ocr.add(ocrCost_train)
        else:
            loss_avg_ocr.add(torch.tensor(0.0))

        
        #Domain discriminator: Dis update
        disModel.zero_grad()
        disCost = opt.disWeight*0.5*(disModel.module.calc_dis_loss(images_recon_1.detach(), image_real) + disModel.module.calc_dis_loss(images_recon_2.detach(), image))
        disCost.backward()
        # torch.nn.utils.clip_grad_norm_(disModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        dis_optimizer.step()
        loss_avg_dis.add(disCost)
        
        # #[Style Encoder] + [Word Generator] update
        #Adversarial loss
        disGenCost = 0.5*(disModel.module.calc_gen_loss(images_recon_1)+disModel.module.calc_gen_loss(images_recon_2))

        #Input reconstruction loss
        recCost = recCriterion(images_recon_1,image)

        #Pair style reconstruction loss
        if opt.styleReconWeight == 0.0:
            styleRecCost = torch.tensor(0.0)
        else:
            if opt.styleDetach:
                styleRecCost = styleRecCriterion(model(images_recon_2, None, None, styleFlag=True), style.detach())
            else:
                styleRecCost = styleRecCriterion(model(images_recon_2, None, None, styleFlag=True), style)

        #OCR Content cost
        ocrCost = 0.5*(ocrCost_1+ocrCost_2)

        cost = opt.ocrWeight*ocrCost + opt.reconWeight*recCost + opt.disWeight*disGenCost + opt.styleReconWeight*styleRecCost

        model.zero_grad()
        ocrModel.zero_grad()
        disModel.zero_grad()
        cost.backward()
        # torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        loss_avg.add(cost)

        #Individual losses
        loss_avg_ocrRecon_1.add(opt.ocrWeight*0.5*ocrCost_1)
        loss_avg_ocrRecon_2.add(opt.ocrWeight*0.5*ocrCost_2)
        loss_avg_gen.add(opt.disWeight*disGenCost)
        loss_avg_imgRecon.add(opt.reconWeight*recCost)
        loss_avg_styRecon.add(opt.styleReconWeight*styleRecCost)

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            os.makedirs(os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(tensor2im(image[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_input_'+labels_gt[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_1[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_recon_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_pair_'+labels_2[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                model.eval()
                ocrModel.module.Transformation.eval()
                ocrModel.module.FeatureExtraction.eval()
                ocrModel.module.AdaptiveAvgPool.eval()
                ocrModel.module.SequenceModeling.eval()
                ocrModel.module.Prediction.eval()
                disModel.eval()
                
                with torch.no_grad():                    
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation_synth_lrw_res(
                        iteration, model, ocrModel, disModel, recCriterion, styleRecCriterion, ocrCriterion, valid_loader, converter, opt)
                model.train()
                if not opt.ocrFixed:
                    ocrModel.train()
                else:
                #     ocrModel.module.Transformation.eval()
                #     ocrModel.module.FeatureExtraction.eval()
                #     ocrModel.module.AdaptiveAvgPool.eval()
                    ocrModel.module.SequenceModeling.train()
                #     ocrModel.module.Prediction.eval()

                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train OCR loss: {loss_avg_ocr.val():0.5f}, Train Synth loss: {loss_avg.val():0.5f}, Train Dis loss: {loss_avg_dis.val():0.5f}, Valid OCR loss: {valid_loss[0]:0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                

                current_model_log_ocr = f'{"Current_accuracy_OCR":17s}: {current_accuracy[0]:0.3f}, {"Current_norm_ED_OCR":17s}: {current_norm_ED[0]:0.2f}'
                current_model_log_1 = f'{"Current_accuracy_recon":17s}: {current_accuracy[1]:0.3f}, {"Current_norm_ED_recon":17s}: {current_norm_ED[1]:0.2f}'
                current_model_log_2 = f'{"Current_accuracy_pair":17s}: {current_accuracy[2]:0.3f}, {"Current_norm_ED_pair":17s}: {current_norm_ED[2]:0.2f}'
                
                #plotting
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Loss'), loss_avg_ocr.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Synth-Loss'), loss_avg.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Recon1-Loss'), loss_avg_ocrRecon_1.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-OCR-Recon2-Loss'), loss_avg_ocrRecon_2.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-ImgRecon1-Loss'), loss_avg_imgRecon.val().item())
                lib.plot.plot(os.path.join(plotDir,'Train-StyRecon2-Loss'), loss_avg_styRecon.val().item())

                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Loss'), valid_loss[0].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Synth-Loss'), valid_loss[1].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Dis-Loss'), valid_loss[2].item())

                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Recon1-Loss'), valid_loss[3].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-OCR-Recon2-Loss'), valid_loss[4].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-Gen-Loss'), valid_loss[5].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-ImgRecon1-Loss'), valid_loss[6].item())
                lib.plot.plot(os.path.join(plotDir,'Valid-StyRecon2-Loss'), valid_loss[7].item())

                lib.plot.plot(os.path.join(plotDir,'Orig-OCR-WordAccuracy'), current_accuracy[0])
                lib.plot.plot(os.path.join(plotDir,'Recon-OCR-WordAccuracy'), current_accuracy[1])
                lib.plot.plot(os.path.join(plotDir,'Pair-OCR-WordAccuracy'), current_accuracy[2])

                lib.plot.plot(os.path.join(plotDir,'Orig-OCR-CharAccuracy'), current_norm_ED[0])
                lib.plot.plot(os.path.join(plotDir,'Recon-OCR-CharAccuracy'), current_norm_ED[1])
                lib.plot.plot(os.path.join(plotDir,'Pair-OCR-CharAccuracy'), current_norm_ED[2])
                

                # keep best accuracy model (on valid dataset)
                if current_accuracy[1] > best_accuracy:
                    best_accuracy = current_accuracy[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_dis.pth'))
                if current_norm_ED[1] > best_norm_ED:
                    best_norm_ED = current_norm_ED[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_dis.pth'))
                best_model_log = f'{"Best_accuracy_Recon":17s}: {best_accuracy:0.3f}, {"Best_norm_ED_Recon":17s}: {best_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy[0] > best_accuracy_ocr:
                    best_accuracy_ocr = current_accuracy[0]
                    if not opt.ocrFixed:
                        torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_ocr.pth'))
                if current_norm_ED[0] > best_norm_ED_ocr:
                    best_norm_ED_ocr = current_norm_ED[0]
                    if not opt.ocrFixed:
                        torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_ocr.pth'))
                best_model_log_ocr = f'{"Best_accuracy_ocr":17s}: {best_accuracy_ocr:0.3f}, {"Best_norm_ED_ocr":17s}: {best_norm_ED_ocr:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log_ocr}\n{current_model_log_1}\n{current_model_log_2}\n{best_model_log_ocr}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":32s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                
                for gt_ocr, pred_ocr, confidence_ocr, gt_1, pred_1, confidence_1, gt_2, pred_2, confidence_2 in zip(labels[0][:5], preds[0][:5], confidence_score[0][:5], labels[1][:5], preds[1][:5], confidence_score[1][:5], labels[2][:5], preds[2][:5], confidence_score[2][:5]):
                    if 'Attn' in opt.Prediction:
                        # gt_ocr = gt_ocr[:gt_ocr.find('[s]')]
                        pred_ocr = pred_ocr[:pred_ocr.find('[s]')]

                        # gt_1 = gt_1[:gt_1.find('[s]')]
                        pred_1 = pred_1[:pred_1.find('[s]')]

                        # gt_2 = gt_2[:gt_2.find('[s]')]
                        pred_2 = pred_2[:pred_2.find('[s]')]

                    predicted_result_log += f'{"ocr"}: {gt_ocr:27s} | {pred_ocr:25s} | {confidence_ocr:0.4f}\t{str(pred_ocr == gt_ocr)}\n'
                    predicted_result_log += f'{"recon"}: {gt_1:25s} | {pred_1:25s} | {confidence_1:0.4f}\t{str(pred_1 == gt_1)}\n'
                    predicted_result_log += f'{"pair"}: {gt_2:26s} | {pred_2:25s} | {confidence_2:0.4f}\t{str(pred_2 == gt_2)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

                loss_avg_ocr.reset()
                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_ocrRecon_1.reset()
                loss_avg_ocrRecon_2.reset()
                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_styRecon.reset()

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+5 == 0:
            torch.save(
                model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            if not opt.ocrFixed:
                torch.save(
                    ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_ocr.pth'))
            torch.save(
                disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_dis.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Ejemplo n.º 11
0
def train(opt):
    lib.print_model_settings(locals().copy())

    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)

    train_dataset, train_dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=opt.batch_size,
        sampler=data_sampler(train_dataset, shuffle=True, distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    log.write(train_dataset_log)
    print('-' * 80)

    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        sampler=data_sampler(train_dataset, shuffle=False, distributed=opt.distributed),
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True, drop_last=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    else:
        converter = CTCLabelConverter(opt.character)
    
    opt.num_class = len(converter.character)

    
    # styleModel = StyleTensorEncoder(input_dim=opt.input_channel)
    # genModel = AdaIN_Tensor_WordGenerator(opt)
    # disModel = MsImageDisV2(opt)

    # styleModel = StyleLatentEncoder(input_dim=opt.input_channel, norm='none')
    # mixModel = Mixer(opt,nblk=3, dim=opt.latent)
    genModel = styleGANGen(opt.size, opt.latent, opt.n_mlp, opt.num_class, channel_multiplier=opt.channel_multiplier).to(device)
    disModel = styleGANDis(opt.size, channel_multiplier=opt.channel_multiplier, input_dim=opt.input_channel).to(device)
    g_ema = styleGANGen(opt.size, opt.latent, opt.n_mlp, opt.num_class, channel_multiplier=opt.channel_multiplier).to(device)
    ocrModel = ModelV1(opt).to(device)
    accumulate(g_ema, genModel, 0)

    # #  weight initialization
    # for currModel in [styleModel, mixModel]:
    #     for name, param in currModel.named_parameters():
    #         if 'localization_fc2' in name:
    #             print(f'Skip {name} as it is already initialized')
    #             continue
    #         try:
    #             if 'bias' in name:
    #                 init.constant_(param, 0.0)
    #             elif 'weight' in name:
    #                 init.kaiming_normal_(param)
    #         except Exception as e:  # for batchnorm.
    #             if 'weight' in name:
    #                 param.data.fill_(1)
    #             continue

    if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
        ocrCriterion = torch.nn.L1Loss()
    else:
        if 'CTC' in opt.Prediction:
            ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
        else:
            ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0

    # vggRecCriterion = torch.nn.L1Loss()
    # vggModel = VGGPerceptualLossModel(models.vgg19(pretrained=True), vggRecCriterion)
    
    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length)

    if opt.distributed:
        genModel = torch.nn.parallel.DistributedDataParallel(
            genModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
        )
        
        disModel = torch.nn.parallel.DistributedDataParallel(
            disModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False,
        )
        ocrModel = torch.nn.parallel.DistributedDataParallel(
            ocrModel,
            device_ids=[opt.local_rank],
            output_device=opt.local_rank,
            broadcast_buffers=False
        )
    
    # styleModel = torch.nn.DataParallel(styleModel).to(device)
    # styleModel.train()
    
    # mixModel = torch.nn.DataParallel(mixModel).to(device)
    # mixModel.train()
    
    # genModel = torch.nn.DataParallel(genModel).to(device)
    # g_ema = torch.nn.DataParallel(g_ema).to(device)
    genModel.train()
    g_ema.eval()

    # disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    # vggModel = torch.nn.DataParallel(vggModel).to(device)
    # vggModel.eval()

    # ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    # if opt.distributed:
    #     ocrModel.module.Transformation.eval()
    #     ocrModel.module.FeatureExtraction.eval()
    #     ocrModel.module.AdaptiveAvgPool.eval()
    #     # ocrModel.module.SequenceModeling.eval()
    #     ocrModel.module.Prediction.eval()
    # else:
    #     ocrModel.Transformation.eval()
    #     ocrModel.FeatureExtraction.eval()
    #     ocrModel.AdaptiveAvgPool.eval()
    #     # ocrModel.SequenceModeling.eval()
    #     ocrModel.Prediction.eval()
    ocrModel.eval()

    if opt.distributed:
        g_module = genModel.module
        d_module = disModel.module
    else:
        g_module = genModel
        d_module = disModel

    g_reg_ratio = opt.g_reg_every / (opt.g_reg_every + 1)
    d_reg_ratio = opt.d_reg_every / (opt.d_reg_every + 1)

    optimizer = optim.Adam(
        genModel.parameters(),
        lr=opt.lr * g_reg_ratio,
        betas=(0 ** g_reg_ratio, 0.99 ** g_reg_ratio),
    )
    dis_optimizer = optim.Adam(
        disModel.parameters(),
        lr=opt.lr * d_reg_ratio,
        betas=(0 ** d_reg_ratio, 0.99 ** d_reg_ratio),
    )

    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth")))>0:
            opt.saved_synth_model = glob.glob(os.path.join(opt.exp_dir,opt.exp_name,"iter_*_synth.pth"))[-1]

    if opt.saved_ocr_model !='' and opt.saved_ocr_model !='None':
        if not opt.distributed:
            ocrModel = torch.nn.DataParallel(ocrModel)
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        checkpoint = torch.load(opt.saved_ocr_model)
        ocrModel.load_state_dict(checkpoint)
        #temporary fix
        if not opt.distributed:
            ocrModel = ocrModel.module
    
    if opt.saved_gen_model !='' and opt.saved_gen_model !='None':
        print(f'loading pretrained gen model from {opt.saved_gen_model}')
        checkpoint = torch.load(opt.saved_gen_model, map_location=lambda storage, loc: storage)
        genModel.module.load_state_dict(checkpoint['g'])
        g_ema.module.load_state_dict(checkpoint['g_ema'])

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)
        
        # styleModel.load_state_dict(checkpoint['styleModel'])
        # mixModel.load_state_dict(checkpoint['mixModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        g_ema.load_state_dict(checkpoint['g_ema'])
        disModel.load_state_dict(checkpoint['disModel'])
        
        optimizer.load_state_dict(checkpoint["optimizer"])
        dis_optimizer.load_state_dict(checkpoint["dis_optimizer"])

    # if opt.imgReconLoss == 'l1':
    #     recCriterion = torch.nn.L1Loss()
    # elif opt.imgReconLoss == 'ssim':
    #     recCriterion = ssim
    # elif opt.imgReconLoss == 'ms-ssim':
    #     recCriterion = msssim
    

    # loss averager
    loss_avg = Averager()
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_vgg_per = Averager()
    loss_avg_vgg_sty = Averager()
    loss_avg_ocr = Averager()

    log_r1_val = Averager()
    log_avg_path_loss_val = Averager()
    log_avg_mean_path_length_avg = Averager()
    log_ada_aug_p = Averager()

    """ final options """
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    
    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    
    #get schedulers
    scheduler = get_scheduler(optimizer,opt)
    dis_scheduler = get_scheduler(dis_optimizer,opt)

    start_time = time.time()
    iteration = start_iter
    cntr=0
    
    mean_path_length = 0
    d_loss_val = 0
    r1_loss = torch.tensor(0.0, device=device)
    g_loss_val = 0
    path_loss = torch.tensor(0.0, device=device)
    path_lengths = torch.tensor(0.0, device=device)
    mean_path_length_avg = 0
    loss_dict = {}

    accum = 0.5 ** (32 / (10 * 1000))
    ada_augment = torch.tensor([0.0, 0.0], device=device)
    ada_aug_p = opt.augment_p if opt.augment_p > 0 else 0.0
    ada_aug_step = opt.ada_target / opt.ada_length
    r_t_stat = 0

    sample_z = torch.randn(opt.n_sample, opt.latent, device=device)

    while(True):
        # print(cntr)
        # train part
       
        if opt.lr_policy !="None":
            scheduler.step()
            dis_scheduler.step()
        
        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()

        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        requires_grad(genModel, False)
        # requires_grad(styleModel, False)
        # requires_grad(mixModel, False)
        requires_grad(disModel, True)

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        
        
        #forward pass from style and word generator
        # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
        style = mixing_noise(opt.batch_size, opt.latent, opt.mixing, device)
        # scInput = mixModel(style,text_2)
        if 'CTC' in opt.Prediction:
            images_recon_2,_ = genModel(style, text_2, input_is_latent=opt.input_latent)
        else:
            images_recon_2,_ = genModel(style, text_2[:,1:-1], input_is_latent=opt.input_latent)
        
        #Domain discriminator: Dis update
        if opt.augment:
            image_gt_tensors_aug, _ = augment(image_gt_tensors, ada_aug_p)
            images_recon_2, _ = augment(images_recon_2, ada_aug_p)

        else:
            image_gt_tensors_aug = image_gt_tensors

        fake_pred = disModel(images_recon_2)
        real_pred = disModel(image_gt_tensors_aug)
        disCost = d_logistic_loss(real_pred, fake_pred)

        loss_dict["d"] = disCost*opt.disWeight
        loss_dict["real_score"] = real_pred.mean()
        loss_dict["fake_score"] = fake_pred.mean()

        loss_avg_dis.add(disCost)

        disModel.zero_grad()
        disCost.backward()
        dis_optimizer.step()

        if opt.augment and opt.augment_p == 0:
            ada_augment += torch.tensor(
                (torch.sign(real_pred).sum().item(), real_pred.shape[0]), device=device
            )
            ada_augment = reduce_sum(ada_augment)

            if ada_augment[1] > 255:
                pred_signs, n_pred = ada_augment.tolist()

                r_t_stat = pred_signs / n_pred

                if r_t_stat > opt.ada_target:
                    sign = 1

                else:
                    sign = -1

                ada_aug_p += sign * ada_aug_step * n_pred
                ada_aug_p = min(1, max(0, ada_aug_p))
                ada_augment.mul_(0)

        d_regularize = cntr % opt.d_reg_every == 0

        if d_regularize:
            image_gt_tensors.requires_grad = True
            image_input_tensors.requires_grad = True
            cat_tensor = image_gt_tensors
            real_pred = disModel(cat_tensor)
            
            r1_loss = d_r1_loss(real_pred, cat_tensor)

            disModel.zero_grad()
            (opt.r1 / 2 * r1_loss * opt.d_reg_every + 0 * real_pred[0]).backward()

            dis_optimizer.step()

        loss_dict["r1"] = r1_loss

        
        # #[Style Encoder] + [Word Generator] update
        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()
        
        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        requires_grad(genModel, True)
        # requires_grad(styleModel, True)
        # requires_grad(mixModel, True)
        requires_grad(disModel, False)

        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)

        # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
        # scInput = mixModel(style,text_2)

        # images_recon_2,_ = genModel([scInput], input_is_latent=opt.input_latent)
        style = mixing_noise(batch_size, opt.latent, opt.mixing, device)
        
        if 'CTC' in opt.Prediction:
            images_recon_2, _ = genModel(style, text_2)
        else:
            images_recon_2, _ = genModel(style, text_2[:,1:-1])

        if opt.augment:
            images_recon_2, _ = augment(images_recon_2, ada_aug_p)

        fake_pred = disModel(images_recon_2)
        disGenCost = g_nonsaturating_loss(fake_pred)

        loss_dict["g"] = disGenCost

        # # #Adversarial loss
        # # disGenCost = disModel.module.calc_gen_loss(torch.cat((images_recon_2,image_input_tensors),dim=1))

        # #Input reconstruction loss
        # recCost = recCriterion(images_recon_2,image_gt_tensors)

        # #vgg loss
        # vggPerCost, vggStyleCost = vggModel(image_gt_tensors, images_recon_2)
        #ocr loss
        text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
        length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
        if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
            preds_recon = ocrModel(images_recon_2, text_for_pred, is_train=False, returnFeat=opt.contentLoss)
            preds_gt = ocrModel(image_gt_tensors, text_for_pred, is_train=False, returnFeat=opt.contentLoss)
            ocrCost = ocrCriterion(preds_recon, preds_gt)
        else:
            if 'CTC' in opt.Prediction:
                
                preds_recon = ocrModel(images_recon_2, text_for_pred, is_train=False)
                # preds_o = preds_recon[:, :text_1.shape[1], :]
                preds_size = torch.IntTensor([preds_recon.size(1)] * batch_size)
                preds_recon_softmax = preds_recon.log_softmax(2).permute(1, 0, 2)
                ocrCost = ocrCriterion(preds_recon_softmax, text_2, preds_size, length_2)
                
                #predict ocr recognition on generated images
                # preds_recon_size = torch.IntTensor([preds_recon.size(1)] * batch_size)
                _, preds_recon_index = preds_recon.max(2)
                labels_o_ocr = converter.decode(preds_recon_index.data, preds_size.data)

                #predict ocr recognition on gt style images
                preds_s = ocrModel(image_input_tensors, text_for_pred, is_train=False)
                # preds_s = preds_s[:, :text_1.shape[1] - 1, :]
                preds_s_size = torch.IntTensor([preds_s.size(1)] * batch_size)
                _, preds_s_index = preds_s.max(2)
                labels_s_ocr = converter.decode(preds_s_index.data, preds_s_size.data)

                #predict ocr recognition on gt stylecontent images
                preds_sc = ocrModel(image_gt_tensors, text_for_pred, is_train=False)
                # preds_sc = preds_sc[:, :text_2.shape[1] - 1, :]
                preds_sc_size = torch.IntTensor([preds_sc.size(1)] * batch_size)
                _, preds_sc_index = preds_sc.max(2)
                labels_sc_ocr = converter.decode(preds_sc_index.data, preds_sc_size.data)

            else:
                preds_recon = ocrModel(images_recon_2, text_for_pred[:, :-1], is_train=False)  # align with Attention.forward
                target_2 = text_2[:, 1:]  # without [GO] Symbol
                ocrCost = ocrCriterion(preds_recon.view(-1, preds_recon.shape[-1]), target_2.contiguous().view(-1))

                #predict ocr recognition on generated images
                _, preds_o_index = preds_recon.max(2)
                labels_o_ocr = converter.decode(preds_o_index, length_for_pred)
                for idx, pred in enumerate(labels_o_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_o_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])

                #predict ocr recognition on gt style images
                preds_s = ocrModel(image_input_tensors, text_for_pred, is_train=False)
                _, preds_s_index = preds_s.max(2)
                labels_s_ocr = converter.decode(preds_s_index, length_for_pred)
                for idx, pred in enumerate(labels_s_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_s_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])
                
                #predict ocr recognition on gt stylecontent images
                preds_sc = ocrModel(image_gt_tensors, text_for_pred, is_train=False)
                _, preds_sc_index = preds_sc.max(2)
                labels_sc_ocr = converter.decode(preds_sc_index, length_for_pred)
                for idx, pred in enumerate(labels_sc_ocr):
                    pred_EOS = pred.find('[s]')
                    labels_sc_ocr[idx] = pred[:pred_EOS]  # prune after "end of sentence" token ([s])

        # cost =  opt.reconWeight*recCost + opt.disWeight*disGenCost + opt.vggPerWeight*vggPerCost + opt.vggStyWeight*vggStyleCost + opt.ocrWeight*ocrCost
        cost =  opt.disWeight*disGenCost + opt.ocrWeight*ocrCost

        # styleModel.zero_grad()
        genModel.zero_grad()
        # mixModel.zero_grad()
        disModel.zero_grad()
        # vggModel.zero_grad()
        ocrModel.zero_grad()
        
        cost.backward()
        optimizer.step()
        loss_avg.add(cost)

        g_regularize = cntr % opt.g_reg_every == 0

        if g_regularize:
            image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(train_loader).next()
        
            image_input_tensors = image_input_tensors.to(device)
            image_gt_tensors = image_gt_tensors.to(device)
            batch_size = image_input_tensors.size(0)

            text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
            text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)

            path_batch_size = max(1, batch_size // opt.path_batch_shrink)

            # style = styleModel(image_input_tensors).squeeze(2).squeeze(2)
            # scInput = mixModel(style,text_2)

            # images_recon_2, latents = genModel([scInput],input_is_latent=opt.input_latent, return_latents=True)

            style = mixing_noise(path_batch_size, opt.latent, opt.mixing, device)
            
            
            if 'CTC' in opt.Prediction:
                images_recon_2, latents = genModel(style, text_2[:path_batch_size], return_latents=True)
            else:
                images_recon_2, latents = genModel(style, text_2[:path_batch_size,1:-1], return_latents=True)
            
            
            path_loss, mean_path_length, path_lengths = g_path_regularize(
                images_recon_2, latents, mean_path_length
            )

            genModel.zero_grad()
            weighted_path_loss = opt.path_regularize * opt.g_reg_every * path_loss

            if opt.path_batch_shrink:
                weighted_path_loss += 0 * images_recon_2[0, 0, 0, 0]

            weighted_path_loss.backward()

            optimizer.step()

            mean_path_length_avg = (
                reduce_sum(mean_path_length).item() / get_world_size()
            )

        loss_dict["path"] = path_loss
        loss_dict["path_length"] = path_lengths.mean()

        accumulate(g_ema, g_module, accum)

        loss_reduced = reduce_loss_dict(loss_dict)

        d_loss_val = loss_reduced["d"].mean().item()
        g_loss_val = loss_reduced["g"].mean().item()
        r1_val = loss_reduced["r1"].mean().item()
        path_loss_val = loss_reduced["path"].mean().item()
        real_score_val = loss_reduced["real_score"].mean().item()
        fake_score_val = loss_reduced["fake_score"].mean().item()
        path_length_val = loss_reduced["path_length"].mean().item()


        #Individual losses
        loss_avg_gen.add(opt.disWeight*disGenCost)
        loss_avg_imgRecon.add(torch.tensor(0.0))
        loss_avg_vgg_per.add(torch.tensor(0.0))
        loss_avg_vgg_sty.add(torch.tensor(0.0))
        loss_avg_ocr.add(opt.ocrWeight*ocrCost)

        log_r1_val.add(loss_reduced["path"])
        log_avg_path_loss_val.add(loss_reduced["path"])
        log_avg_mean_path_length_avg.add(torch.tensor(mean_path_length_avg))
        log_ada_aug_p.add(torch.tensor(ada_aug_p))
        
        if get_rank() == 0:
            # pbar.set_description(
            #     (
            #         f"d: {d_loss_val:.4f}; g: {g_loss_val:.4f}; r1: {r1_val:.4f}; "
            #         f"path: {path_loss_val:.4f}; mean path: {mean_path_length_avg:.4f}; "
            #         f"augment: {ada_aug_p:.4f}"
            #     )
            # )

            if wandb and opt.wandb:
                wandb.log(
                    {
                        "Generator": g_loss_val,
                        "Discriminator": d_loss_val,
                        "Augment": ada_aug_p,
                        "Rt": r_t_stat,
                        "R1": r1_val,
                        "Path Length Regularization": path_loss_val,
                        "Mean Path Length": mean_path_length,
                        "Real Score": real_score_val,
                        "Fake Score": fake_score_val,   
                        "Path Length": path_length_val,
                    }
                )
            # if cntr % 100 == 0:
            #     with torch.no_grad():
            #         g_ema.eval()
            #         sample, _ = g_ema([scInput[:,:opt.latent],scInput[:,opt.latent:]])
            #         utils.save_image(
            #             sample,
            #             os.path.join(opt.trainDir, f"sample_{str(cntr).zfill(6)}.png"),
            #             nrow=int(opt.n_sample ** 0.5),
            #             normalize=True,
            #             range=(-1, 1),
            #         )


        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            curr_batch_size = style[0].shape[0]
            images_recon_2, _ = g_ema(style, text_2[:curr_batch_size], input_is_latent=opt.input_latent)
            
            os.makedirs(os.path.join(opt.trainDir,str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    if opt.contentLoss == 'vis' or opt.contentLoss == 'seq':
                        save_image(tensor2im(image_input_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_sInput_'+labels_1[trImgCntr]+'.png'))
                        save_image(tensor2im(image_gt_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csGT_'+labels_2[trImgCntr]+'.png'))
                        save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csRecon_'+labels_2[trImgCntr]+'.png'))
                    else:
                        save_image(tensor2im(image_input_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_sInput_'+labels_1[trImgCntr]+'_'+labels_s_ocr[trImgCntr]+'.png'))
                        save_image(tensor2im(image_gt_tensors[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csGT_'+labels_2[trImgCntr]+'_'+labels_sc_ocr[trImgCntr]+'.png'))
                        save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.trainDir,str(iteration),str(trImgCntr)+'_csRecon_'+labels_2[trImgCntr]+'_'+labels_o_ocr[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                # styleModel.eval()
                genModel.eval()
                g_ema.eval()
                # mixModel.eval()
                disModel.eval()
                
                with torch.no_grad():                    
                    valid_loss, infer_time, length_of_data = validation_synth_v6(
                        iteration, g_ema, ocrModel, disModel, ocrCriterion, valid_loader, converter, opt)
                
                # styleModel.train()
                genModel.train()
                # mixModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train Synth loss: {loss_avg.val():0.5f}, \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train OCR loss: {loss_avg_ocr.val():0.5f}, \
                    Train R1-val loss: {log_r1_val.val():0.5f}, Train avg-path-loss: {log_avg_path_loss_val.val():0.5f}, \
                    Train mean-path-length loss: {log_avg_mean_path_length_avg.val():0.5f}, Train ada-aug-p: {log_ada_aug_p.val():0.5f}, \
                    Valid Synth loss: {valid_loss[0]:0.5f}, \
                    Valid Dis loss: {valid_loss[1]:0.5f}, Valid Gen loss: {valid_loss[2]:0.5f}, \
                    Valid OCR loss: {valid_loss[6]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                
                
                #plotting
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Synth-Loss'), loss_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Dis-Loss'), loss_avg_dis.val().item())
                
                lib.plot.plot(os.path.join(opt.plotDir,'Train-Gen-Loss'), loss_avg_gen.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-ImgRecon1-Loss'), loss_avg_imgRecon.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-VGG-Per-Loss'), loss_avg_vgg_per.val().item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Train-VGG-Sty-Loss'), loss_avg_vgg_sty.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-OCR-Loss'), loss_avg_ocr.val().item())

                lib.plot.plot(os.path.join(opt.plotDir,'Train-r1_val'), log_r1_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-path_loss_val'), log_avg_path_loss_val.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-mean_path_length_avg'), log_avg_mean_path_length_avg.val().item())
                lib.plot.plot(os.path.join(opt.plotDir,'Train-ada_aug_p'), log_ada_aug_p.val().item())

                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Synth-Loss'), valid_loss[0].item())
                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Dis-Loss'), valid_loss[1].item())

                lib.plot.plot(os.path.join(opt.plotDir,'Valid-Gen-Loss'), valid_loss[2].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-ImgRecon1-Loss'), valid_loss[3].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-VGG-Per-Loss'), valid_loss[4].item())
                # lib.plot.plot(os.path.join(opt.plotDir,'Valid-VGG-Sty-Loss'), valid_loss[5].item())
                lib.plot.plot(os.path.join(opt.plotDir,'Valid-OCR-Loss'), valid_loss[6].item())
                
                print(loss_log)

                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_vgg_per.reset()
                loss_avg_vgg_sty.reset()
                loss_avg_ocr.reset()

                log_r1_val.reset()
                log_avg_path_loss_val.reset()
                log_avg_mean_path_length_avg.reset()
                log_ada_aug_p.reset()
                

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save({
                # 'styleModel':styleModel.state_dict(),
                # 'mixModel':mixModel.state_dict(),
                'genModel':g_module.state_dict(),
                'g_ema':g_ema.state_dict(),
                'disModel':d_module.state_dict(),
                'optimizer':optimizer.state_dict(),
                'dis_optimizer':dis_optimizer.state_dict()}, 
                os.path.join(opt.exp_dir,opt.exp_name,'iter_'+str(iteration+1)+'_synth.pth'))
            

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
        cntr+=1
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '	')
    log.close()
    """ model configuration """
    # if 'CTC' in opt.Prediction:
    if opt.baiduCTC:
        CTC_converter = CTCLabelConverterForBaiduWarpctc(opt.character)
    else:
        CTC_converter = CTCLabelConverter(opt.character)


# else:
    Attn_converter = AttnLabelConverter(opt.character)
    opt.num_class_ctc = len(CTC_converter.character)
    opt.num_class_attn = len(Attn_converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class_ctc, opt.num_class_attn, opt.batch_max_length,
          opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling,
          opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        # print(name)
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    print("Model:")
    print(model)
    # print(summary(model, (1, opt.imgH, opt.imgW,1)))
    """ setup loss """
    if opt.baiduCTC:
        # need to install warpctc. see our guideline.
        if opt.label_smooth:
            criterion_major_path = SmoothCTCLoss(num_classes=opt.num_class_ctc,
                                                 weight=0.05)
        else:
            criterion_major_path = CTCLoss()
        #criterion_major_path = CTCLoss(average_frames=False, reduction="mean", blank=0)
    else:
        criterion_major_path = torch.nn.CTCLoss(zero_infinity=True).to(device)
    # else:
    #     criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    #criterion_major_path = torch.nn.CTCLoss(zero_infinity=True).to(device)
    criterion_guide_path = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)
    loss_avg_major_path = Averager()
    loss_avg_guide_path = Averager()
    # filter that only require gradient decent
    guide_parameters = []
    major_parameters = []
    guide_model_part_names = [
        "Transformation", "FeatureExtraction", "SequenceModeling_Attn",
        "Attention"
    ]
    major_model_part_names = ["SequenceModeling_CTC", "CTC"]
    for name, param in model.named_parameters():
        if param.requires_grad:
            if name.split(".")[1] in guide_model_part_names:
                guide_parameters.append(param)
            elif name.split(".")[1] in major_model_part_names:
                major_parameters.append(param)
            # print(name)
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]
    if opt.continue_training:
        guide_parameters = []
    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer_ctc = AdamW(major_parameters, lr=opt.lr)
        if not opt.continue_training:
            optimizer_attn = AdamW(guide_parameters, lr=opt.lr)
    scheduler_ctc = get_linear_schedule_with_warmup(
        optimizer_ctc, num_warmup_steps=10000, num_training_steps=opt.num_iter)
    scheduler_attn = get_linear_schedule_with_warmup(
        optimizer_attn,
        num_warmup_steps=10000,
        num_training_steps=opt.num_iter)
    start_iter = 0
    if opt.saved_model != '' and (not opt.continue_training):
        print(f'loading pretrained model from {opt.saved_model}')
        checkpoint = torch.load(opt.saved_model)
        start_iter = checkpoint['start_iter'] + 1
        if not opt.adam:
            optimizer_ctc.load_state_dict(
                checkpoint['optimizer_ctc_state_dict'])
            if not opt.continue_training:
                optimizer_attn.load_state_dict(
                    checkpoint['optimizer_attn_state_dict'])
            scheduler_ctc.load_state_dict(
                checkpoint['scheduler_ctc_state_dict'])
            scheduler_attn.load_state_dict(
                checkpoint['scheduler_attn_state_dict'])
            print(scheduler_ctc.get_lr())
            print(scheduler_attn.get_lr())
        if opt.FT:
            model.load_state_dict(checkpoint['model_state_dict'], strict=False)
        else:
            model.load_state_dict(checkpoint['model_state_dict'])
    if opt.continue_training:
        model.load_state_dict(torch.load(opt.saved_model))
    # print("Optimizer:")
    # print(optimizer)
    #
    scheduler_ctc = get_linear_schedule_with_warmup(
        optimizer_ctc,
        num_warmup_steps=10000,
        num_training_steps=opt.num_iter,
        last_epoch=start_iter - 1)
    scheduler_attn = get_linear_schedule_with_warmup(
        optimizer_attn,
        num_warmup_steps=10000,
        num_training_steps=opt.num_iter,
        last_epoch=start_iter - 1)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------	'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}	'
        opt_log += '---------------------------------------	'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter - 1
    if opt.continue_training:
        start_iter = 0
    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        iteration += 1
        if iteration < start_iter:
            continue
        image = image_tensors.to(device)
        # print(image.size())
        text_attn, length_attn = Attn_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        #print("1")
        text_ctc, length_ctc = CTC_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        #print("2")
        #if iteration == start_iter :
        #    writer.add_graph(model, (image, text_attn))
        batch_size = image.size(0)
        preds_major, preds_guide = model(image, text_attn[:, :-1])
        #print("10")
        preds_size = torch.IntTensor([preds_major.size(1)] * batch_size)
        if opt.baiduCTC:
            preds_major = preds_major.permute(1, 0, 2)  # to use CTCLoss format
            if opt.label_smooth:
                cost_ctc = criterion_major_path(preds_major, text_ctc,
                                                preds_size, length_ctc,
                                                batch_size)
            else:
                cost_ctc = criterion_major_path(
                    preds_major, text_ctc, preds_size, length_ctc) / batch_size
        else:
            preds_major = preds_major.log_softmax(2).permute(1, 0, 2)
            cost_ctc = criterion_major_path(preds_major, text_ctc, preds_size,
                                            length_ctc)
        #print("3")
        # preds = model(image, text[:, :-1])  # align with Attention.forward
        target = text_attn[:, 1:]  # without [GO] Symbol
        if not opt.continue_training:
            cost_attn = criterion_guide_path(
                preds_guide.view(-1, preds_guide.shape[-1]),
                target.contiguous().view(-1))
            optimizer_attn.zero_grad()
            cost_attn.backward(retain_graph=True)
            torch.nn.utils.clip_grad_norm_(
                guide_parameters,
                opt.grad_clip)  # gradient clipping with 5 (Default)
            optimizer_attn.step()
        optimizer_ctc.zero_grad()
        cost_ctc.backward()
        torch.nn.utils.clip_grad_norm_(
            major_parameters,
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer_ctc.step()
        scheduler_ctc.step()
        scheduler_attn.step()
        #print("4")
        loss_avg_major_path.add(cost_ctc)
        if not opt.continue_training:
            loss_avg_guide_path.add(cost_attn)
        if (iteration + 1) % 100 == 0:
            writer.add_scalar("Loss/train_ctc", loss_avg_major_path.val(),
                              (iteration + 1) // 100)
            loss_avg_major_path.reset()
            if not opt.continue_training:
                writer.add_scalar("Loss/train_attn", loss_avg_guide_path.val(),
                                  (iteration + 1) // 100)
                loss_avg_guide_path.reset()
        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0:  #or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion_major_path, valid_loader,
                        CTC_converter, opt)
                model.train()
                writer.add_scalar("Loss/valid", valid_loss,
                                  (iteration + 1) // opt.valInterval)
                writer.add_scalar("Metrics/accuracy", current_accuracy,
                                  (iteration + 1) // opt.valInterval)
                writer.add_scalar("Metrics/norm_ED", current_norm_ED,
                                  (iteration + 1) // opt.valInterval)
                # loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {train_loss:0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                # loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
                # training loss and validation loss
                if not opt.continue_training:
                    loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss ctc: {loss_avg_major_path.val():0.5f}, Train loss attn: {loss_avg_guide_path.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                else:
                    loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss ctc: {loss_avg_major_path.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg_major_path.reset()
                if not opt.continue_training:
                    loss_avg_guide_path.reset()
                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(),
                               f'{fol_ckpt}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(),
                               f'{fol_ckpt}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}	{current_model_log}	{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '	')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}	{head}	{dashed_line}	'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    # if 'Attn' in opt.Prediction:
                    #     gt = gt[:gt.find('[s]')]
                    #     pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}	{str(pred == gt)}	'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '	')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+3 == 0 and (not opt.continue_training):
            # print(scheduler_ctc.get_lr())
            # print(scheduler_attn.get_lr())
            torch.save(
                {
                    'model_state_dict': model.state_dict(),
                    'optimizer_attn_state_dict': optimizer_attn.state_dict(),
                    'optimizer_ctc_state_dict': optimizer_ctc.state_dict(),
                    'start_iter': iteration,
                    'scheduler_ctc_state_dict': scheduler_ctc.state_dict(),
                    'scheduler_attn_state_dict': scheduler_attn.state_dict(),
                }, f'{fol_ckpt}/current_model.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
Ejemplo n.º 13
0
def test(opt):
    lib.print_model_settings(locals().copy())
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    log = open(os.path.join(opt.exp_dir, opt.exp_name, 'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH,
                                          imgW=opt.imgW,
                                          keep_ratio_with_pad=opt.PAD)

    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True,
        drop_last=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    if 'Attn' in opt.Prediction:
        converter = AttnLabelConverter(opt.character)
    else:
        converter = CTCLabelConverter(opt.character)

    opt.num_class = len(converter.character)

    g_ema = styleGANGen(opt.size,
                        opt.latent,
                        opt.n_mlp,
                        opt.num_class,
                        channel_multiplier=opt.channel_multiplier)
    g_ema = torch.nn.DataParallel(g_ema).to(device)
    g_ema.eval()

    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel,
          opt.output_channel, opt.hidden_size, opt.num_class,
          opt.batch_max_length)

    ## Loading pre-trained files
    if opt.modelFolderFlag:
        if len(
                glob.glob(
                    os.path.join(opt.exp_dir, opt.exp_name,
                                 "iter_*_synth.pth"))) > 0:
            opt.saved_synth_model = glob.glob(
                os.path.join(opt.exp_dir, opt.exp_name,
                             "iter_*_synth.pth"))[-1]

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)

        g_ema.load_state_dict(checkpoint['g_ema'], strict=False)

    # pdb.set_trace()
    if opt.truncation < 1:
        with torch.no_grad():
            mean_latent = g_ema.module.mean_latent_content(opt.truncation_mean)

    else:
        mean_latent = None

    cntr = 0

    for i, (image_input_tensors, image_gt_tensors, labels_1,
            labels_2) in enumerate(valid_loader):
        print(i, len(valid_loader))
        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)

        text_1, length_1 = converter.encode(
            labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(
            labels_2, batch_max_length=opt.batch_max_length)

        #forward pass from style and word generator
        if opt.fixedStyleBatch:
            fixstyle = []
            # pdb.set_trace()
            style = mixing_noise(1, opt.latent, opt.mixing, device)
            fixstyle.append(style[0].repeat(opt.batch_size, 1))
            if len(style) > 1:
                fixstyle.append(style[1].repeat(opt.batch_size, 1))
            style = fixstyle
        else:
            style = mixing_noise(opt.batch_size, opt.latent, opt.mixing,
                                 device)

        if 'CTC' in opt.Prediction:
            images_recon_2, _ = g_ema(style,
                                      text_2,
                                      input_is_latent=opt.input_latent,
                                      inject_index=5,
                                      truncation=opt.truncation,
                                      truncation_latent=mean_latent,
                                      randomize_noise=False)
        else:
            images_recon_2, _ = g_ema(style,
                                      text_2[:, 1:-1],
                                      input_is_latent=opt.input_latent,
                                      inject_index=5,
                                      truncation=opt.truncation,
                                      truncation_latent=mean_latent,
                                      randomize_noise=False)

        # os.makedirs(os.path.join(opt.valDir,str(iteration)), exist_ok=True)
        for trImgCntr in range(batch_size):
            try:
                save_image(
                    tensor2im(image_input_tensors[trImgCntr].detach()),
                    os.path.join(
                        opt.valDir,
                        str(cntr) + '_' + str(trImgCntr) + '_sInput_' +
                        labels_1[trImgCntr] + '.png'))
                save_image(
                    tensor2im(image_gt_tensors[trImgCntr].detach()),
                    os.path.join(
                        opt.valDir,
                        str(cntr) + '_' + str(trImgCntr) + '_csGT_' +
                        labels_2[trImgCntr] + '.png'))
                save_image(
                    tensor2im(images_recon_2[trImgCntr].detach()),
                    os.path.join(
                        opt.valDir,
                        str(cntr) + '_' + str(trImgCntr) + '_csRecon_' +
                        labels_2[trImgCntr] + '.png'))
            except:
                print('Warning while saving training image')
        cntr += 1
Ejemplo n.º 14
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    # CTCLoss
    converter_ctc = CTCLabelConverter(opt.character)
    # Attention
    converter_atten = AttnLabelConverter(opt.character)
    opt.num_class_ctc = len(converter_ctc.character)
    opt.num_class_atten = len(converter_atten.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class_ctc, opt.num_class_atten, opt.batch_max_length,
          opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling,
          opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p_: p_.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    # use fp16 to train
    model = model.to(device)
    if opt.fp16:
        with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log:
            log.write('==> Enable fp16 training' + '\n')
        print('==> Enable fp16 training')
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

    # data parallel for multi-GPU
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model).to(device)
    model.train()
    # for i in model.module.Prediction_atten:
    #     i.to(device)
    # for i in model.module.Feat_Extraction.scr:
    #     i.to(device)
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    """ setup loss """
    criterion_ctc = torch.nn.CTCLoss(zero_infinity=True).to(device)
    criterion_atten = torch.nn.CrossEntropyLoss(ignore_index=0).to(
        device)  # ignore [GO] token = ignore index 0

    # loss averager
    loss_avg = Averager()
    """ final options """
    writer = SummaryWriter(f'./saved_models/{opt.exp_name}')
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    # image_tensors, labels = train_dataset.get_batch()
    while True:
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        batch_size = image.size(0)
        text_ctc, length_ctc = converter_ctc.encode(
            labels, batch_max_length=opt.batch_max_length)
        text_atten, length_atten = converter_atten.encode(
            labels, batch_max_length=opt.batch_max_length)

        # type tuple; (tensor, list);         text_atten[:, :-1]:align with Attention.forward
        preds_ctc, preds_atten = model(image, text_atten[:, :-1])
        # CTC Loss
        preds_size = torch.IntTensor([preds_ctc.size(1)] * batch_size)
        # _, preds_index = preds_ctc.max(2)
        # preds_str_ctc = converter_ctc.decode(preds_index.data, preds_size.data)
        preds_ctc = preds_ctc.log_softmax(2).permute(1, 0, 2)
        cost_ctc = 0.1 * criterion_ctc(preds_ctc, text_ctc, preds_size,
                                       length_ctc)

        # Attention Loss
        # preds_atten = [i[:, :text_atten.shape[1] - 1, :] for i in preds_atten]
        # # select max probabilty (greedy decoding) then decode index to character
        # preds_index_atten = [i.max(2)[1] for i in preds_atten]
        # length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device)
        # preds_str_atten = [converter_atten.decode(i, length_for_pred) for i in preds_index_atten]
        # preds_str_atten2 = preds_str_atten
        # preds_str_atten = []
        # for i in preds_str_atten2:  # prune after "end of sentence" token ([s])
        #     temp = []
        #     for j in i:
        #         j = j[:j.find('[s]')]
        #         temp.append(j)
        #     preds_str_atten.append(temp)
        # preds_str_atten = [j[:j.find('[s]')] for i in preds_str_atten for j in i]
        target = text_atten[:, 1:]  # without [GO] Symbol
        # cost_atten = 1.0 * criterion_atten(preds_atten.view(-1, preds_atten.shape[-1]), target.contiguous().view(-1))
        for index, pred in enumerate(preds_atten):
            if index == 0:
                cost_atten = 1.0 * criterion_atten(
                    pred.view(-1, pred.shape[-1]),
                    target.contiguous().view(-1))
            else:
                cost_atten += 1.0 * criterion_atten(
                    pred.view(-1, pred.shape[-1]),
                    target.contiguous().view(-1))
        # cost_atten = [1.0 * criterion_atten(pred.view(-1, pred.shape[-1]), target.contiguous().view(-1)) for pred in
        #               preds_atten]
        # cost_atten = criterion_atten(preds_atten.view(-1, preds_atten.shape[-1]), target.contiguous().view(-1))
        cost = cost_ctc + cost_atten
        writer.add_scalar('loss', cost.item(), global_step=iteration + 1)

        # cost = cost_ctc
        # cost = cost_atten
        if (iteration + 1) % 100 == 0:
            print('\riter: {:4d}\tloss: {:6.3f}\tavg: {:6.3f}'.format(
                iteration + 1, cost.item(), loss_avg.val()),
                  end='\n')
        else:
            print('\riter: {:4d}\tloss: {:6.3f}\tavg: {:6.3f}'.format(
                iteration + 1, cost.item(), loss_avg.val()),
                  end='')
        sys.stdout.flush()
        if cost < 0.001:
            print(f'iter: {iteration + 1}\tloss: {cost}')
            # aaaaaa = 0

        # model.zero_grad()
        optimizer.zero_grad()
        if torch.isnan(cost):
            print(f'iter: {iteration + 1}\tloss: {cost}\t==> Loss is NAN')
            sys.exit()
        elif torch.isinf(cost):
            print(f'iter: {iteration + 1}\tloss: {cost}\t==> Loss is INF')
            sys.exit()
        else:
            if opt.fp16:
                with amp.scale_loss(cost, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                cost.backward()
            torch.nn.utils.clip_grad_norm_(
                model.parameters(),
                opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)
        writer.add_scalar('loss_avg',
                          loss_avg.val(),
                          global_step=iteration + 1)
        # if loss_avg.val() <= 0.6:
        #     opt.grad_clip = 2
        # if loss_avg.val() <= 0.3:
        #     opt.grad_clip = 1

        # validation part
        if iteration == 0 or (
                iteration + 1
        ) % opt.valInterval == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion_atten, valid_loader, converter_atten,
                        opt)
                model.train()
                writer.add_scalar('accuracy',
                                  current_accuracy,
                                  global_step=iteration + 1)

                # training loss and validation loss
                loss_log = f'[{iteration + 1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    gt = gt[:gt.find('[s]')]
                    pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(),
                f'./saved_models/{opt.exp_name}/iter_{iteration + 1}.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()

        # if (iteration + 1) % opt.valInterval == 0:
        #     print(f'iter: {iteration + 1}\tloss: {cost}')
        iteration += 1
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    # train_dataset (image, label)
    train_dataset = Batch_Balanced_Dataset(opt)
    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            converter = CTCLabelConverterForBaiduWarpctc(opt.character)
        else:
            converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)

    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    print("Model:")
    print(model)

    total_num, true_grad_num, false_grad_num = calculate_model_params(model)
    print("Total parameters: ", total_num)
    print("Number of parameters requires grad: ", true_grad_num)
    print("Number of parameters do not require grad: ", false_grad_num)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if isinstance(model, torch.nn.DataParallel):
        model = model.module
    # load pretrained model
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_pretrained_networks()
        elif opt.continue_train:
            model.load_checkpoint(opt.model_name)
        else:
            raise Exception('Something went wrong!')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        if opt.baiduCTC:
            # need to install warpctc. see our guideline.
            from warpctc_pytorch import CTCLoss
            criterion = CTCLoss()
        else:
            criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()
    log_dir = f'./saved_models/{opt.exp_name}'
    writer = SummaryWriter(log_dir)

    # """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            if opt.baiduCTC:
                preds = preds.permute(1, 0, 2)  # to use CTCLoss format
                cost = criterion(preds, text, preds_size, length) / batch_size
            else:
                preds = preds.log_softmax(2).permute(1, 0, 2)
                cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        model.optimize_parameters()
        writer.add_scalar('train_loss', cost, iteration + 1)
        loss_avg.add(cost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt,
                        iteration)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                writer.add_scalar('val_loss', valid_loss, iteration + 1)
                writer.add_scalar('accuracy', current_accuracy, iteration + 1)
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    model.save_checkpoints(iteration, 'best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    model.save_checkpoints(iteration, 'best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]
                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            model.save_checkpoints(iteration + 1, opt.model_name)

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Ejemplo n.º 16
0
def test(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)
    model = torch.nn.DataParallel(model).to(device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    # return model
    AlignCollate_evaluation = AlignCollate(imgH=opt.imgH,
                                           imgW=opt.imgW,
                                           keep_ratio_with_pad=opt.PAD)
    eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data,
                                                    opt=opt)
    evaluation_loader = torch.utils.data.DataLoader(
        eval_data,
        batch_size=opt.batch_size,
        shuffle=False,
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_evaluation,
        pin_memory=True)
    # _, accuracy_by_best_model, _, _, _, _, _, _ = validation(
    #     model, criterion, evaluation_loader, converter, opt)

    for i, (image_tensors, labels) in enumerate(evaluation_loader):
        # batch_size = image_tensors.size(0)
        # text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device)
        target_layer = model.module.FeatureExtraction.ConvNet.layer4[-1]
        # model.eval()
        # handle =model.module.Transformation.register_forward_hook(hook)
        # model(image_tensors,text_for_pred)
        input_tensor = image_tensors
        # print(labels)
        # print(input_tensor.shape,'input_tensor.shape')
        # handle.remove()
        # print(input_tensor)
        # Create an input tensor image for your model..
        # input_tensor=image_tensors
        # Note: input_tensor can be a batch tensor with several images!
        # print(labels)
        # Construct the CAM object once, and then re-use it on many images:
        cam = EigenCAM(model=model,
                       target_layer=target_layer,
                       use_cuda=opt.use_cuda)

        # If target_category is None, the highest scoring category
        # will be used for every image in the batch.
        # target_category can also be an integer, or a list of different integers
        # for every image in the batch.
        text_for_loss, length_for_loss = converter.encode(
            labels, batch_max_length=opt.batch_max_length)

        target_category = text_for_loss

        # You can also pass aug_smooth=True and eigen_smooth=True, to apply smoothing.
        grayscale_cam = cam(input_tensor=input_tensor,
                            target_category=target_category)

        # In this example grayscale_cam has only one image in the batch:
        grayscale_cam = grayscale_cam[0, :]
        loader = transforms.ToPILImage()
        sourc_image = loader(image_tensors[0])
        sourc_image = cv2.cvtColor(np.asarray(sourc_image), cv2.COLOR_RGB2BGR)
        # rgb_img=loader(input_tensor[0].cpu())
        # rgb_img.save('rgb_visual.bmp')
        # rgb_img2=cv2.imread('rgb_visual.bmp')
        rgb_img2 = np.float32(sourc_image) / 255
        visualization = show_cam_on_image(rgb_img2, grayscale_cam)
        sourc_image = cv2.resize(sourc_image, (0, 0),
                                 fx=5,
                                 fy=5,
                                 interpolation=cv2.INTER_CUBIC)
        visualization = cv2.resize(visualization, (0, 0),
                                   fx=5,
                                   fy=5,
                                   interpolation=cv2.INTER_CUBIC)
        cat_image = np.vstack((sourc_image, visualization))
        cv2.imwrite('visual_image2/' + str(i) + '_2.bmp', cat_image)
Ejemplo n.º 17
0
def train(opt, log):
    """dataset preparation"""
    # train dataset. for convenience
    if opt.select_data == "label":
        select_data = [
            "1.SVT",
            "2.IIIT",
            "3.IC13",
            "4.IC15",
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
        ]

    elif opt.select_data == "synth":
        select_data = ["MJ", "ST"]

    elif opt.select_data == "synth_SA":
        select_data = ["MJ", "ST", "SA"]
        opt.batch_ratio = "0.4-0.4-0.2"  # same ratio with SCATTER paper.

    elif opt.select_data == "mix":
        select_data = [
            "1.SVT",
            "2.IIIT",
            "3.IC13",
            "4.IC15",
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
            "MJ",
            "ST",
        ]

    elif opt.select_data == "mix_SA":
        select_data = [
            "1.SVT",
            "2.IIIT",
            "3.IC13",
            "4.IC15",
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
            "MJ",
            "ST",
            "SA",
        ]

    else:
        select_data = opt.select_data.split("-")

    # set batch_ratio for each data.
    if opt.batch_ratio:
        batch_ratio = opt.batch_ratio.split("-")
    else:
        batch_ratio = [round(1 / len(select_data), 3)] * len(select_data)

    train_loader = Batch_Balanced_Dataset(opt, opt.train_data, select_data,
                                          batch_ratio, log)

    if opt.semi != "None":
        select_data_unlabel = ["U1.Book32", "U2.TextVQA", "U3.STVQA"]
        batch_ratio_unlabel = [round(1 / len(select_data_unlabel), 3)
                               ] * len(select_data_unlabel)
        dataset_root_unlabel = "data_CVPR2021/training/unlabel/"
        train_loader_unlabel_semi = Batch_Balanced_Dataset(
            opt,
            dataset_root_unlabel,
            select_data_unlabel,
            batch_ratio_unlabel,
            log,
            learn_type="semi",
        )

    AlignCollate_valid = AlignCollate(opt, mode="test")
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt, mode="test")
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=False,
    )
    log.write(valid_dataset_log)
    print("-" * 80)
    log.write("-" * 80 + "\n")
    """ model configuration """
    if "CTC" in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
        opt.sos_token_index = converter.dict["[SOS]"]
        opt.eos_token_index = converter.dict["[EOS]"]
    opt.num_class = len(converter.character)

    model = Model(opt)

    # weight initialization
    for name, param in model.named_parameters():
        if "localization_fc2" in name:
            print(f"Skip {name} as it is already initialized")
            continue
        try:
            if "bias" in name:
                init.constant_(param, 0.0)
            elif "weight" in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if "weight" in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != "":
        fine_tuning_log = f"### loading pretrained model from {opt.saved_model}\n"

        if "MoCo" in opt.saved_model or "MoCo" in opt.self_pre:
            pretrained_state_dict_qk = torch.load(opt.saved_model)
            pretrained_state_dict = {}
            for name in pretrained_state_dict_qk:
                if "encoder_q" in name:
                    rename = name.replace("encoder_q.", "")
                    pretrained_state_dict[rename] = pretrained_state_dict_qk[
                        name]
        else:
            pretrained_state_dict = torch.load(opt.saved_model)

        for name, param in model.named_parameters():
            try:
                param.data.copy_(pretrained_state_dict[name].data
                                 )  # load from pretrained model
                if opt.FT == "freeze":
                    param.requires_grad = False  # Freeze
                    fine_tuning_log += f"pretrained layer (freezed): {name}\n"
                else:
                    fine_tuning_log += f"pretrained layer: {name}\n"
            except:
                fine_tuning_log += f"non-pretrained layer: {name}\n"

        print(fine_tuning_log)
        log.write(fine_tuning_log + "\n")

    # print("Model:")
    # print(model)
    log.write(repr(model) + "\n")
    """ setup loss """
    if "CTC" in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        # ignore [PAD] token
        criterion = torch.nn.CrossEntropyLoss(
            ignore_index=converter.dict["[PAD]"]).to(device)

    if "Pseudo" in opt.semi:
        criterion_SemiSL = PseudoLabelLoss(opt, converter, criterion)
    elif "MeanT" in opt.semi:
        criterion_SemiSL = MeanTeacherLoss(opt, student_for_init_teacher=model)

    # loss averager
    train_loss_avg = Averager()
    semi_loss_avg = Averager()  # semi supervised loss avg

    # filter that only require gradient descent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print(f"Trainable params num: {sum(params_num)}")
    log.write(f"Trainable params num: {sum(params_num)}\n")
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optimizer == "sgd":
        optimizer = torch.optim.SGD(
            filtered_parameters,
            lr=opt.lr,
            momentum=opt.sgd_momentum,
            weight_decay=opt.sgd_weight_decay,
        )
    elif opt.optimizer == "adadelta":
        optimizer = torch.optim.Adadelta(filtered_parameters,
                                         lr=opt.lr,
                                         rho=opt.rho,
                                         eps=opt.eps)
    elif opt.optimizer == "adam":
        optimizer = torch.optim.Adam(filtered_parameters, lr=opt.lr)
    print("Optimizer:")
    print(optimizer)
    log.write(repr(optimizer) + "\n")

    if "super" in opt.schedule:
        if opt.optimizer == "sgd":
            cycle_momentum = True
        else:
            cycle_momentum = False

        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=opt.lr,
            cycle_momentum=cycle_momentum,
            div_factor=20,
            final_div_factor=1000,
            total_steps=opt.num_iter,
        )
        print("Scheduler:")
        print(scheduler)
        log.write(repr(scheduler) + "\n")
    """ final options """
    # print(opt)
    opt_log = "------------ Options -------------\n"
    args = vars(opt)
    for k, v in args.items():
        if str(k) == "character" and len(str(v)) > 500:
            opt_log += f"{str(k)}: So many characters to show all: number of characters: {len(str(v))}\n"
        else:
            opt_log += f"{str(k)}: {str(v)}\n"
    opt_log += "---------------------------------------\n"
    print(opt_log)
    log.write(opt_log)
    log.close()
    """ start training """
    start_iter = 0
    if opt.saved_model != "":
        try:
            start_iter = int(opt.saved_model.split("_")[-1].split(".")[0])
            print(f"continue to train, start_iter: {start_iter}")
        except:
            pass

    start_time = time.time()
    best_score = -1

    # training loop
    for iteration in tqdm(
            range(start_iter + 1, opt.num_iter + 1),
            total=opt.num_iter,
            position=0,
            leave=True,
    ):
        if "MeanT" in opt.semi:
            image_tensors, image_tensors_ema, labels = train_loader.get_batch_ema(
            )
        else:
            image_tensors, labels = train_loader.get_batch()

        image = image_tensors.to(device)
        labels_index, labels_length = converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        # default recognition loss part
        if "CTC" in opt.Prediction:
            preds = model(image)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds_log_softmax = preds.log_softmax(2).permute(1, 0, 2)
            loss = criterion(preds_log_softmax, labels_index, preds_size,
                             labels_length)
        else:
            preds = model(image,
                          labels_index[:, :-1])  # align with Attention.forward
            target = labels_index[:, 1:]  # without [SOS] Symbol
            loss = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        # semi supervised part (SemiSL)
        if "Pseudo" in opt.semi:
            image_unlabel, _ = train_loader_unlabel_semi.get_batch_two_images()
            image_unlabel = image_unlabel.to(device)
            loss_SemiSL = criterion_SemiSL(image_unlabel, model)

            loss = loss + loss_SemiSL
            semi_loss_avg.add(loss_SemiSL)

        elif "MeanT" in opt.semi:
            (
                image_tensors_unlabel,
                image_tensors_unlabel_ema,
            ) = train_loader_unlabel_semi.get_batch_two_images()
            image_unlabel = image_tensors_unlabel.to(device)
            student_input = torch.cat([image, image_unlabel], dim=0)

            image_ema = image_tensors_ema.to(device)
            image_unlabel_ema = image_tensors_unlabel_ema.to(device)
            teacher_input = torch.cat([image_ema, image_unlabel_ema], dim=0)
            loss_SemiSL = criterion_SemiSL(
                student_input=student_input,
                student_logit=preds,
                student=model,
                teacher_input=teacher_input,
                iteration=iteration,
            )

            loss = loss + loss_SemiSL
            semi_loss_avg.add(loss_SemiSL)

        model.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        train_loss_avg.add(loss)

        if "super" in opt.schedule:
            scheduler.step()
        else:
            adjust_learning_rate(optimizer, iteration, opt)

        # validation part.
        # To see training progress, we also conduct validation when 'iteration == 1'
        if iteration % opt.val_interval == 0 or iteration == 1:
            # for validation log
            with open(f"./saved_models/{opt.exp_name}/log_train.txt",
                      "a") as log:
                model.eval()
                with torch.no_grad():
                    (
                        valid_loss,
                        current_score,
                        preds,
                        confidence_score,
                        labels,
                        infer_time,
                        length_of_data,
                    ) = validation(model, criterion, valid_loader, converter,
                                   opt)
                model.train()

                # keep best score (accuracy or norm ED) model on valid dataset
                # Do not use this on test datasets. It would be an unfair comparison
                # (training should be done without referring test set).
                if current_score > best_score:
                    best_score = current_score
                    torch.save(
                        model.state_dict(),
                        f"./saved_models/{opt.exp_name}/best_score.pth",
                    )

                # validation log: loss, lr, score (accuracy or norm ED), time.
                lr = optimizer.param_groups[0]["lr"]
                elapsed_time = time.time() - start_time
                valid_log = f"\n[{iteration}/{opt.num_iter}] Train_loss: {train_loss_avg.val():0.5f}, Valid_loss: {valid_loss:0.5f}"
                valid_log += f", Semi_loss: {semi_loss_avg.val():0.5f}\n"
                valid_log += f'{"Current_score":17s}: {current_score:0.2f}, Current_lr: {lr:0.7f}\n'
                valid_log += f'{"Best_score":17s}: {best_score:0.2f}, Infer_time: {infer_time:0.1f}, Elapsed_time: {elapsed_time:0.1f}'

                # show some predicted results
                dashed_line = "-" * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f"{dashed_line}\n{head}\n{dashed_line}\n"
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if "Attn" in opt.Prediction:
                        gt = gt[:gt.find("[EOS]")]
                        pred = pred[:pred.find("[EOS]")]

                    predicted_result_log += f"{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n"
                predicted_result_log += f"{dashed_line}"
                valid_log = f"{valid_log}\n{predicted_result_log}"
                print(valid_log)
                log.write(valid_log + "\n")

                opt.writer.add_scalar("train/train_loss",
                                      float(f"{train_loss_avg.val():0.5f}"),
                                      iteration)
                opt.writer.add_scalar("train/semi_loss",
                                      float(f"{semi_loss_avg.val():0.5f}"),
                                      iteration)
                opt.writer.add_scalar("train/lr", float(f"{lr:0.7f}"),
                                      iteration)
                opt.writer.add_scalar("train/elapsed_time",
                                      float(f"{elapsed_time:0.1f}"), iteration)
                opt.writer.add_scalar("valid/valid_loss",
                                      float(f"{valid_loss:0.5f}"), iteration)
                opt.writer.add_scalar("valid/current_score",
                                      float(f"{current_score:0.2f}"),
                                      iteration)
                opt.writer.add_scalar("valid/best_score",
                                      float(f"{best_score:0.2f}"), iteration)

                train_loss_avg.reset()
                semi_loss_avg.reset()
    """ Evaluation at the end of training """
    print("Start evaluation on benchmark testset")
    """ keep evaluation model and result logs """
    os.makedirs(f"./result/{opt.exp_name}", exist_ok=True)
    os.makedirs(f"./evaluation_log", exist_ok=True)
    saved_best_model = f"./saved_models/{opt.exp_name}/best_score.pth"
    # os.system(f'cp {saved_best_model} ./result/{opt.exp_name}/')
    model.load_state_dict(torch.load(f"{saved_best_model}"))

    opt.eval_type = "benchmark"
    model.eval()
    with torch.no_grad():
        total_accuracy, eval_data_list, accuracy_list = benchmark_all_eval(
            model, criterion, converter, opt)

    opt.writer.add_scalar("test/total_accuracy",
                          float(f"{total_accuracy:0.2f}"), iteration)
    for eval_data, accuracy in zip(eval_data_list, accuracy_list):
        accuracy = float(accuracy)
        opt.writer.add_scalar(f"test/{eval_data}", float(f"{accuracy:0.2f}"),
                              iteration)

    print(
        f'finished the experiment: {opt.exp_name}, "CUDA_VISIBLE_DEVICES" was {opt.CUDA_VISIBLE_DEVICES}'
    )
Ejemplo n.º 18
0
def train(opt, log):
    if opt.self == "MoCo":
        opt.batch_size = 256

    """ dataset preparation """
    if opt.select_data == "unlabel":
        select_data = ["U1.Book32", "U2.TextVQA", "U3.STVQA"]
        batch_ratio = [round(1 / len(select_data), 3)] * len(select_data)

    else:
        select_data = opt.select_data.split("-")
        batch_ratio = opt.batch_ratio.split("-")

    train_loader = Batch_Balanced_Dataset(
        opt, opt.train_data, select_data, batch_ratio, log, learn_type="self"
    )

    AlignCollate_valid = AlignCollate_SelfSL(opt)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt, data_type="unlabel"
    )
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=False,
    )
    log.write(valid_dataset_log)
    print("-" * 80)
    log.write("-" * 80 + "\n")

    """ model configuration """
    if opt.self == "RotNet":
        model = Model(opt, SelfSL_layer=opt.SelfSL_layer)

        # weight initialization
        for name, param in model.named_parameters():
            if "localization_fc2" in name:
                print(f"Skip {name} as it is already initialized")
                continue
            try:
                if "bias" in name:
                    init.constant_(param, 0.0)
                elif "weight" in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if "weight" in name:
                    param.data.fill_(1)
                continue

    elif opt.self == "MoCo":
        model = MoCoLoss(
            opt, dim=opt.moco_dim, K=opt.moco_k, m=opt.moco_m, T=opt.moco_t
        )

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != "":
        print(f"loading pretrained model from {opt.saved_model}")
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)
    log.write(repr(model) + "\n")

    """ setup loss """
    criterion = torch.nn.CrossEntropyLoss(ignore_index=-1).to(device)

    # loss averager
    train_loss_avg = Averager()
    valid_loss_avg = Averager()

    # filter that only require gradient descent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print(f"Trainable params num: {sum(params_num)}")
    log.write(f"Trainable params num: {sum(params_num)}\n")
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optimizer == "adam":
        optimizer = torch.optim.Adam(filtered_parameters, lr=opt.lr)
    elif opt.self == "MoCo":
        optimizer = torch.optim.SGD(
            filtered_parameters,
            lr=opt.moco_lr,
            momentum=opt.moco_SGD_m,
            weight_decay=opt.moco_wd,
        )
        opt.schedule = opt.moco_schedule
        opt.lr = opt.moco_lr
        opt.lr_drop_rate = opt.moco_lr_drop_rate
    else:
        optimizer = torch.optim.SGD(
            filtered_parameters,
            lr=opt.lr,
            momentum=opt.momentum,
            weight_decay=opt.weight_decay,
        )
    print("Optimizer:")
    print(optimizer)
    log.write(repr(optimizer) + "\n")

    if "super" in opt.schedule:
        if opt.optimizer == "sgd":
            cycle_momentum = True
        else:
            cycle_momentum = False

        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=opt.lr,
            cycle_momentum=cycle_momentum,
            div_factor=20,
            final_div_factor=1000,
            total_steps=opt.num_iter,
        )
        print("Scheduler:")
        print(scheduler)
        log.write(repr(scheduler) + "\n")

    """ final options """
    # print(opt)
    opt_log = "------------ Options -------------\n"
    args = vars(opt)
    for k, v in args.items():
        opt_log += f"{str(k)}: {str(v)}\n"
    opt_log += "---------------------------------------\n"
    print(opt_log)
    log.write(opt_log)
    log.close()

    """ start training """
    start_iter = 0
    if opt.saved_model != "":
        try:
            start_iter = int(opt.saved_model.split("_")[-1].split(".")[0])
            print(f"continue to train, start_iter: {start_iter}")
        except:
            pass

    start_time = time.time()
    iteration = start_iter
    best_score = -1

    # training loop
    for iteration in tqdm(
        range(start_iter + 1, opt.num_iter + 1),
        total=opt.num_iter,
        position=0,
        leave=True,
    ):
        # train part
        if opt.self == "RotNet":
            image, Self_label = train_loader.get_batch()
            image = image.to(device)

            preds = model(image, SelfSL_layer=opt.SelfSL_layer)
            target = torch.LongTensor(Self_label).to(device)

        elif opt.self == "MoCo":
            q, k = train_loader.get_batch_two_images()
            q = q.to(device)
            k = k.to(device)
            preds, target = model(im_q=q, im_k=k)

        loss = criterion(preds, target)
        train_loss_avg.add(loss)

        model.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(), opt.grad_clip
        )  # gradient clipping with 5 (Default)
        optimizer.step()

        if "super" in opt.schedule:
            scheduler.step()
        else:
            adjust_learning_rate(optimizer, iteration, opt)

        # validation part.
        # To see training progress, we also conduct validation when 'iteration == 1'
        if iteration % opt.val_interval == 0 or iteration == 1:
            # for validation log
            with open(f"./saved_models/{opt.exp_name}/log_train.txt", "a") as log:
                model.eval()
                with torch.no_grad():
                    length_of_data = 0
                    infer_time = 0
                    n_correct = 0
                    for i, (image_valid, Self_label_valid) in tqdm(
                        enumerate(valid_loader),
                        total=len(valid_loader),
                        position=1,
                        leave=False,
                    ):
                        if opt.self == "RotNet":
                            batch_size = image_valid.size(0)
                            start_infer_time = time.time()
                            preds = model(
                                image_valid.to(device), SelfSL_layer=opt.SelfSL_layer
                            )
                            forward_time = time.time() - start_infer_time
                            target = torch.LongTensor(Self_label_valid).to(device)

                        elif opt.self == "MoCo":
                            batch_size = image_valid.size(0)
                            q_valid = image_valid.to(device)
                            k_valid = Self_label_valid.to(device)
                            start_infer_time = time.time()
                            preds, target = model(im_q=q_valid, im_k=k_valid)
                            forward_time = time.time() - start_infer_time

                        loss = criterion(preds, target)
                        valid_loss_avg.add(loss)
                        infer_time += forward_time
                        _, preds_index = preds.max(1)
                        n_correct += (preds_index == target).sum().item()
                        length_of_data = length_of_data + batch_size

                    current_score = n_correct / length_of_data * 100

                model.train()

                # keep best score (accuracy) model on valid dataset
                if current_score > best_score:
                    best_score = current_score
                    torch.save(
                        model.state_dict(),
                        f"./saved_models/{opt.exp_name}/best_score.pth",
                    )

                # validation log: loss, lr, score, time.
                lr = optimizer.param_groups[0]["lr"]
                elapsed_time = time.time() - start_time
                valid_log = f"\n[{iteration}/{opt.num_iter}] Train loss: {train_loss_avg.val():0.5f}, Valid loss: {valid_loss_avg.val():0.5f}, lr: {lr:0.7f}\n"
                valid_log += f"Best_score: {best_score:0.2f}, Current_score: {current_score:0.2f}, "
                valid_log += (
                    f"Infer_time: {infer_time:0.1f}, Elapsed_time: {elapsed_time:0.1f}"
                )
                train_loss_avg.reset()
                valid_loss_avg.reset()

                # show some predicted results
                dashed_line = "-" * 80
                if opt.self == "RotNet":
                    head = f"GT:0 vs Pred | GT:90 vs Pred | GT:180 vs Pred | GT:270 vs Pred"
                    preds_index = preds_index[:20]
                    gts = Self_label_valid[:20]
                elif opt.self == "MoCo":
                    head = f"GT:0 vs Pred | GT:0 vs Pred | GT:0 vs Pred | GT:0 vs Pred"
                    preds_index = preds_index[:8]
                    gts = torch.zeros(preds_index.shape[0], dtype=torch.long)

                predicted_result_log = f"{dashed_line}\n{head}\n{dashed_line}\n"
                for i, (gt, pred) in enumerate(zip(gts, preds_index)):
                    if opt.self == "RotNet":
                        gt, pred = gt * 90, pred * 90
                    if i % 4 != 3:
                        predicted_result_log += f"{gt} vs {pred} | "
                    else:
                        predicted_result_log += f"{gt} vs {pred} \n"
                predicted_result_log += f"{dashed_line}"
                valid_log = f"{valid_log}\n{predicted_result_log}"
                print(valid_log)
                log.write(valid_log + "\n")

    print(
        f'finished the experiment: {opt.exp_name}, "CUDA_VISIBLE_DEVICES" was {opt.CUDA_VISIBLE_DEVICES}'
    )
Ejemplo n.º 19
0
def train(opt):

    if opt.use_tb:
        tb_dir = f'/home_hongdo/{getpass.getuser()}/tb/{opt.experiment_name}'
        print('tensorboard : ', tb_dir)
        if not os.path.exists(tb_dir):
            os.makedirs(tb_dir)
        writer = SummaryWriter(log_dir=tb_dir)
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    # log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
    log = open(f'{save_dir}/{opt.experiment_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3

    # sekim for transfer learning
    model = Model(opt, 38)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)

    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))

    # sekim change last layer
    in_feature = model.module.Prediction.generator.in_features
    model.module.Prediction.attention_cell.rnn = nn.LSTMCell(
        256 + opt.num_class, 256).to(device)
    model.module.Prediction.generator = nn.Linear(in_feature,
                                                  opt.num_class).to(device)

    print(model.module.Prediction.generator)
    print("Model:")
    print(model)

    model.train()
    """ setup loss """
    criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
        device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """

    # with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
    with open(f'{save_dir}/{opt.experiment_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print("-------------------------------------------------")
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        preds = model(image, text[:, :-1])  # align with Attention.forward
        target = text[:, 1:]  # without [GO] Symbol
        cost = criterion(preds.view(-1, preds.shape[-1]),
                         target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'{save_dir}/{opt.experiment_name}/log_train.txt',
                      'a') as log:
                # with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)

                model.train()

                # training loss and validation loss

                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()
                if opt.use_tb:
                    writer.add_scalar('OCR_loss/train_loss', loss_avg.val(), i)
                    writer.add_scalar('OCR_loss/validation_loss', valid_loss,
                                      i)

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    # torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
                    torch.save(
                        model.state_dict(),
                        f'{save_dir}/{opt.experiment_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    # torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                    torch.save(
                        model.state_dict(),
                        f'{save_dir}/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):

                    gt = gt[:gt.find('[s]')]
                    pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            # torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
            torch.save(model.state_dict(),
                       f'{save_dir}/{opt.experiment_name}/iter_{i + 1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
def test(opt):
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # model = torch.nn.DataParallel(model).to(device)
    model = model.to(device=device)

    # load model
    print('loading pretrained model from %s' % opt.saved_model)
    model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    opt.exp_name = '_'.join(opt.saved_model.split('/')[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f'./result/{opt.exp_name}', exist_ok=True)
    os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    """ evaluation """
    model.eval()
    with torch.no_grad():
        if opt.benchmark_all_eval:  # evaluation with 10 benchmark evaluation datasets
            benchmark_all_eval(model, criterion, converter, opt)
        else:
            log = open(f'./result/{opt.exp_name}/log_evaluation.txt', 'a')
            AlignCollate_evaluation = AlignCollate(imgH=opt.imgH,
                                                   imgW=opt.imgW,
                                                   keep_ratio_with_pad=opt.PAD)
            if opt.eval_data == "haoweilaichn":
                eval_data = TalOcrChnDataset(
                    "/home/ldl/桌面/论文/文本识别/data/TAL_OCR_CHN手写中文数据集/test_64")
            elif opt.eval_data == "haoweilaieng":
                eval_data = TalOcrEngDataset(
                    "/home/ldl/桌面/论文/文本识别/data/TAL_OCR_ENG手写英文数据集/data_composition",
                    "/home/ldl/桌面/论文/文本识别/data/TAL_OCR_ENG手写英文数据集/label_test.txt"
                )
            elif opt.eval_data == 'trueeng':
                eval_data = mytrdg_cutimg_dataset(
                    total_img_path=
                    '/home/ldl/桌面/论文/文本识别/data/finish_data/eng_image/test/img',
                    annotation_path=
                    '/home/ldl/桌面/论文/文本识别/data/finish_data/eng_image/test/gt')
            else:
                eval_data, eval_data_log = hierarchical_dataset(
                    root=opt.eval_data, opt=opt)
                log.write(eval_data_log)
            evaluation_loader = torch.utils.data.DataLoader(
                eval_data,
                batch_size=opt.batch_size,
                shuffle=False,
                num_workers=int(opt.workers),
                collate_fn=AlignCollate_evaluation,
                pin_memory=True)
            _, accuracy_by_best_model, current_norm_ED, _, _, _, _, _ = validation(
                model,
                criterion,
                evaluation_loader,
                converter,
                opt,
                printlabel=True,
                decodewithoutlen=True)

            print(f'{accuracy_by_best_model:0.3f}')
            print(f'{current_norm_ED:0.3f}')
            log.write(f'{accuracy_by_best_model:0.3f}\n')
            log.close()
Ejemplo n.º 21
0
def train(opt):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #considering the real images for discriminator
    opt.batch_size = opt.batch_size*2

    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(os.path.join(opt.exp_dir,opt.exp_name,'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    
    model = AdaINGen(opt)
    ocrModel = Model(opt)
    disModel = MsImageDis()
    
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # Synthesizer weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    
    # Recognizer weight initialization
    for name, param in ocrModel.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    
    # Discriminator weight initialization
    for name, param in disModel.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue


    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()

    ocrModel = torch.nn.DataParallel(ocrModel).to(device)
    ocrModel.train()
    
    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    
    if opt.saved_synth_model != '':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_synth_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_synth_model))
    print("Model:")
    print(model)

    if opt.saved_ocr_model != '':
        print(f'loading pretrained ocr model from {opt.saved_ocr_model}')
        if opt.FT:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model), strict=False)
        else:
            ocrModel.load_state_dict(torch.load(opt.saved_ocr_model))
    # ocrModel.eval()   #as we can't call RNN.backward in eval mode
    print("OCRModel:")
    print(ocrModel)

    if opt.saved_dis_model != '':
        print(f'loading pretrained discriminator model from {opt.saved_dis_model}')
        if opt.FT:
            disModel.load_state_dict(torch.load(opt.saved_dis_model), strict=False)
        else:
            disModel.load_state_dict(torch.load(opt.saved_dis_model))
    # ocrModel.eval()   #as we can't call RNN.backward in eval mode
    print("DisModel:")
    print(disModel)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        ocrCriterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        ocrCriterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    
    recCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg = Averager()
    loss_avg_ocr = Averager() ##----------
    loss_avg_dis = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("SynthOptimizer:")
    print(optimizer)

    #filter parameters for OCR training
    # filter that only require gradient decent
    ocr_filtered_parameters = []
    ocr_params_num = []
    for p in filter(lambda p: p.requires_grad, ocrModel.parameters()):
        ocr_filtered_parameters.append(p)
        ocr_params_num.append(np.prod(p.size()))
    print('OCR Trainable params num : ', sum(ocr_params_num))


    # setup optimizer
    if opt.adam:
        ocr_optimizer = optim.Adam(ocr_filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        ocr_optimizer = optim.Adadelta(ocr_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("OCROptimizer:")
    print(ocr_optimizer)

    #filter parameters for OCR training
    # filter that only require gradient decent
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.adam:
        dis_optimizer = optim.Adam(dis_filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("DisOptimizer:")
    print(dis_optimizer)



    """ final options """
    # print(opt)
    with open(os.path.join(opt.exp_dir,opt.exp_name,'opt.txt'), 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    if opt.saved_synth_model != '':
        try:
            start_iter = int(opt.saved_synth_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    best_accuracy_ocr = -1
    best_norm_ED_ocr = -1
    iteration = start_iter

    while(True):
        # train part
        
        image_tensors_all, labels_1_all, labels_2_all = train_dataset.get_batch()

        # ## comment
        # pdb.set_trace()
        # for imgCntr in range(image_tensors.shape[0]):
        #     save_image(tensor2im(image_tensors[imgCntr]),'temp/'+str(imgCntr)+'.png')
        # pdb.set_trace()
        # ###
        
        disCnt = int(image_tensors_all.size(0)/2)
        image_tensors, image_tensors_real, labels_1, labels_2 = image_tensors_all[:disCnt], image_tensors_all[disCnt:disCnt+disCnt], labels_1_all[:disCnt], labels_2_all[:disCnt]

        image = image_tensors.to(device)
        image_real = image_tensors_real.to(device)
        text_1, length_1 = converter.encode(labels_1, batch_max_length=opt.batch_max_length)
        text_2, length_2 = converter.encode(labels_2, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        images_recon_1, images_recon_2, _ = model(image, text_1, text_2)
        

        if 'CTC' in opt.Prediction:
            
            #ocr training
            preds_ocr = ocrModel(image, text_1)
            preds_size_ocr = torch.IntTensor([preds_ocr.size(1)] * batch_size)
            preds_ocr = preds_ocr.log_softmax(2).permute(1, 0, 2)

            ocrCost_train = ocrCriterion(preds_ocr, text_1, preds_size_ocr, length_1)

            #dis training
            #Check: Using alternate real images
            disCost = opt.disWeight*0.5*(disModel.module.calc_dis_loss(images_recon_1.detach(), image_real) + disModel.module.calc_dis_loss(images_recon_2.detach(), image))

            #synth training
            preds_1 = ocrModel(images_recon_1, text_1)
            preds_size_1 = torch.IntTensor([preds_1.size(1)] * batch_size)
            preds_1 = preds_1.log_softmax(2).permute(1, 0, 2)

            preds_2 = ocrModel(images_recon_2, text_2)
            preds_size_2 = torch.IntTensor([preds_2.size(1)] * batch_size)
            preds_2 = preds_2.log_softmax(2).permute(1, 0, 2)

            ocrCost = 0.5*(ocrCriterion(preds_1, text_1, preds_size_1, length_1) + ocrCriterion(preds_2, text_2, preds_size_2, length_2))
            
            #gen training
            disGenCost = 0.5*(disModel.module.calc_gen_loss(images_recon_1)+disModel.module.calc_gen_loss(images_recon_2))

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            ocrCost = ocrCriterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        
        recCost = recCriterion(images_recon_1,image)

        cost = opt.ocrWeight*ocrCost + opt.reconWeight*recCost + opt.disWeight*disGenCost

        disModel.zero_grad()
        disCost.backward()
        torch.nn.utils.clip_grad_norm_(disModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        dis_optimizer.step()

        loss_avg_dis.add(disCost)
        
        model.zero_grad()
        ocrModel.zero_grad()
        disModel.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        #training OCR
        ocrModel.zero_grad()
        ocrCost_train.backward()
        torch.nn.utils.clip_grad_norm_(ocrModel.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        ocr_optimizer.step()

        loss_avg_ocr.add(ocrCost_train)

        #START HERE
        # validation part
        
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' 
            
            #Save training images
            os.makedirs(os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration)), exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(tensor2im(image[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_input_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_1[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_recon_'+labels_1[trImgCntr]+'.png'))
                    save_image(tensor2im(images_recon_2[trImgCntr].detach()),os.path.join(opt.exp_dir,opt.exp_name,'trainImages',str(iteration),str(trImgCntr)+'_pair_'+labels_2[trImgCntr]+'.png'))
                except:
                    print('Warning while saving training image')
            
            elapsed_time = time.time() - start_time
            # for log
            
            with open(os.path.join(opt.exp_dir,opt.exp_name,'log_train.txt'), 'a') as log:
                model.eval()
                ocrModel.eval()
                disModel.eval()
                with torch.no_grad():
                    # valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                    #     model, criterion, valid_loader, converter, opt)
                    
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation_synth_adv(
                        iteration, model, ocrModel, disModel, recCriterion, ocrCriterion, valid_loader, converter, opt)
                model.train()
                ocrModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train OCR loss: {loss_avg_ocr.val():0.5f}, Train Synth loss: {loss_avg.val():0.5f}, Train Dis loss: {loss_avg_dis.val():0.5f}, Valid OCR loss: {valid_loss[0]:0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg_ocr.reset()
                loss_avg.reset()
                loss_avg_dis.reset()

                current_model_log_ocr = f'{"Current_accuracy_OCR":17s}: {current_accuracy[0]:0.3f}, {"Current_norm_ED_OCR":17s}: {current_norm_ED[0]:0.2f}'
                current_model_log_1 = f'{"Current_accuracy_recon":17s}: {current_accuracy[1]:0.3f}, {"Current_norm_ED_recon":17s}: {current_norm_ED[1]:0.2f}'
                current_model_log_2 = f'{"Current_accuracy_pair":17s}: {current_accuracy[2]:0.3f}, {"Current_norm_ED_pair":17s}: {current_norm_ED[2]:0.2f}'
                
                # keep best accuracy model (on valid dataset)
                if current_accuracy[1] > best_accuracy:
                    best_accuracy = current_accuracy[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_dis.pth'))
                if current_norm_ED[1] > best_norm_ED:
                    best_norm_ED = current_norm_ED[1]
                    torch.save(model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED.pth'))
                    torch.save(disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_dis.pth'))
                best_model_log = f'{"Best_accuracy_Recon":17s}: {best_accuracy:0.3f}, {"Best_norm_ED_Recon":17s}: {best_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy[0] > best_accuracy_ocr:
                    best_accuracy_ocr = current_accuracy[0]
                    torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_accuracy_ocr.pth'))
                if current_norm_ED[0] > best_norm_ED_ocr:
                    best_norm_ED_ocr = current_norm_ED[0]
                    torch.save(ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'best_norm_ED_ocr.pth'))
                best_model_log_ocr = f'{"Best_accuracy_ocr":17s}: {best_accuracy_ocr:0.3f}, {"Best_norm_ED_ocr":17s}: {best_norm_ED_ocr:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log_ocr}\n{current_model_log_1}\n{current_model_log_2}\n{best_model_log_ocr}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":32s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt_ocr, pred_ocr, confidence_ocr, gt_1, pred_1, confidence_1, gt_2, pred_2, confidence_2 in zip(labels[0][:5], preds[0][:5], confidence_score[0][:5], labels[1][:5], preds[1][:5], confidence_score[1][:5], labels[2][:5], preds[2][:5], confidence_score[2][:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{"ocr"}: {gt_ocr:27s} | {pred_ocr:25s} | {confidence_ocr:0.4f}\t{str(pred_ocr == gt_ocr)}\n'
                    predicted_result_log += f'{"recon"}: {gt_1:25s} | {pred_1:25s} | {confidence_1:0.4f}\t{str(pred_1 == gt_1)}\n'
                    predicted_result_log += f'{"pair"}: {gt_2:26s} | {pred_2:25s} | {confidence_2:0.4f}\t{str(pred_2 == gt_2)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_{iteration+1}.pth'))
            torch.save(
                ocrModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_{iteration+1}_ocr.pth'))
            torch.save(
                disModel.state_dict(), os.path.join(opt.exp_dir,opt.exp_name,'iter_{iteration+1}_dis.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Ejemplo n.º 22
0
def benchmark_all_eval(model,
                       criterion,
                       converter,
                       opt,
                       calculate_infer_time=False):

    if opt.eval_type == "benchmark":
        """evaluation with 6 benchmark evaluation datasets"""
        eval_data_list = [
            "IIIT5k_3000",
            "SVT",
            "IC13_1015",
            "IC15_2077",
            "SVTP",
            "CUTE80",
        ]
        opt.eval_data = "data_CVPR2021/evaluation/benchmark/"

    elif opt.eval_type == "addition":
        """evaluation with 7 additionally collected evaluation datasets"""
        eval_data_list = [
            "5.COCO",
            "6.RCTW17",
            "7.Uber",
            "8.ArT",
            "9.LSVT",
            "10.MLT19",
            "11.ReCTS",
        ]
        opt.eval_data = "data_CVPR2021/evaluation/addition/"

    if calculate_infer_time:
        eval_batch_size = (
            1  # batch_size should be 1 to calculate the GPU inference time per image.
        )
    else:
        eval_batch_size = opt.batch_size

    accuracy_list = []
    total_forward_time = 0
    total_eval_data_number = 0
    total_correct_number = 0
    log = open(f"./result/{opt.exp_name}/log_all_evaluation.txt", "a")
    dashed_line = "-" * 80
    print(dashed_line)
    log.write(dashed_line + "\n")
    for eval_data in eval_data_list:
        eval_data_path = os.path.join(opt.eval_data, eval_data)
        AlignCollate_eval = AlignCollate(opt, mode="test")
        eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path,
                                                        opt=opt,
                                                        mode="test")
        eval_loader = torch.utils.data.DataLoader(
            eval_data,
            batch_size=eval_batch_size,
            shuffle=False,
            num_workers=int(opt.workers),
            collate_fn=AlignCollate_eval,
            pin_memory=True,
        )

        _, accuracy_by_best_model, _, _, _, infer_time, length_of_data = validation(
            model, criterion, eval_loader, converter, opt, tqdm_position=0)
        accuracy_list.append(f"{accuracy_by_best_model:0.2f}")
        total_forward_time += infer_time
        total_eval_data_number += len(eval_data)
        total_correct_number += accuracy_by_best_model * length_of_data
        log.write(eval_data_log)
        print(f"Acc {accuracy_by_best_model:0.2f}")
        log.write(f"Acc {accuracy_by_best_model:0.2f}\n")
        print(dashed_line)
        log.write(dashed_line + "\n")

    averaged_forward_time = total_forward_time / total_eval_data_number * 1000
    total_accuracy = total_correct_number / total_eval_data_number
    params_num = sum([np.prod(p.size()) for p in model.parameters()])

    eval_log = "accuracy: "
    for name, accuracy in zip(eval_data_list, accuracy_list):
        eval_log += f"{name}: {accuracy}\t"
    eval_log += f"total_accuracy: {total_accuracy:0.2f}\t"
    eval_log += f"averaged_infer_time: {averaged_forward_time:0.3f}\t# parameters: {params_num/1e6:0.2f}"
    print(eval_log)
    log.write(eval_log + "\n")

    # for convenience
    print("\t".join(accuracy_list))
    print(f"Total_accuracy:{total_accuracy:0.2f}")
    log.write("\t".join(accuracy_list) + "\n")
    log.write(f"Total_accuracy:{total_accuracy:0.2f}" + "\n")
    log.close()

    # for convenience
    today = date.today()
    if opt.log_multiple_test:
        log_all_model = open(f"./evaluation_log/log_multiple_test_{today}.txt",
                             "a")
        log_all_model.write("\t".join(accuracy_list) + "\n")
    else:
        log_all_model = open(
            f"./evaluation_log/log_all_model_evaluation_{today}.txt", "a")
        log_all_model.write(
            f"./result/{opt.exp_name}\tTotal_accuracy:{total_accuracy:0.2f}\n")
        log_all_model.write("\t".join(accuracy_list) + "\n")
    log_all_model.close()

    return total_accuracy, eval_data_list, accuracy_list
Ejemplo n.º 23
0
def train(opt):
    plotDir = os.path.join(opt.exp_dir, opt.exp_name, 'plots')
    if not os.path.exists(plotDir):
        os.makedirs(plotDir)

    lib.print_model_settings(locals().copy())
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    log = open(os.path.join(opt.exp_dir, opt.exp_name, 'log_dataset.txt'), 'a')
    AlignCollate_valid = AlignPairCollate(imgH=opt.imgH,
                                          imgW=opt.imgW,
                                          keep_ratio_with_pad=opt.PAD)

    train_dataset, train_dataset_log = hierarchical_dataset(
        root=opt.train_data, opt=opt)
    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(train_dataset_log)
    print('-' * 80)

    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        False,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()

    converter = CTCLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3

    styleModel = StyleTensorEncoder(input_dim=opt.input_channel)
    genModel = AdaIN_Tensor_WordGenerator(opt)
    disModel = MsImageDisV2(opt)

    vggRecCriterion = torch.nn.L1Loss()
    vggModel = VGGPerceptualLossModel(models.vgg19(pretrained=True),
                                      vggRecCriterion)

    print('model input parameters', opt.imgH, opt.imgW, opt.input_channel,
          opt.output_channel, opt.hidden_size, opt.num_class,
          opt.batch_max_length)

    #  weight initialization
    for currModel in [styleModel, genModel, disModel]:
        for name, param in currModel.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue

    styleModel = torch.nn.DataParallel(styleModel).to(device)
    styleModel.train()

    genModel = torch.nn.DataParallel(genModel).to(device)
    genModel.train()

    disModel = torch.nn.DataParallel(disModel).to(device)
    disModel.train()

    vggModel = torch.nn.DataParallel(vggModel).to(device)
    vggModel.eval()

    if opt.modelFolderFlag:
        if len(
                glob.glob(
                    os.path.join(opt.exp_dir, opt.exp_name,
                                 "iter_*_synth.pth"))) > 0:
            opt.saved_synth_model = glob.glob(
                os.path.join(opt.exp_dir, opt.exp_name,
                             "iter_*_synth.pth"))[-1]

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        print(f'loading pretrained synth model from {opt.saved_synth_model}')
        checkpoint = torch.load(opt.saved_synth_model)

        styleModel.load_state_dict(checkpoint['styleModel'])
        genModel.load_state_dict(checkpoint['genModel'])
        disModel.load_state_dict(checkpoint['disModel'])

    if opt.imgReconLoss == 'l1':
        recCriterion = torch.nn.L1Loss()
    elif opt.imgReconLoss == 'ssim':
        recCriterion = ssim
    elif opt.imgReconLoss == 'ms-ssim':
        recCriterion = msssim

    if opt.styleLoss == 'l1':
        styleRecCriterion = torch.nn.L1Loss()
    elif opt.styleLoss == 'triplet':
        styleRecCriterion = torch.nn.TripletMarginLoss(
            margin=opt.tripletMargin, p=1)
    #for validation; check only positive pairs
    styleTestRecCriterion = torch.nn.L1Loss()

    # loss averager
    loss_avg = Averager()
    loss_avg_dis = Averager()
    loss_avg_gen = Averager()
    loss_avg_imgRecon = Averager()
    loss_avg_vgg_per = Averager()
    loss_avg_vgg_sty = Averager()

    ##---------------------------------------##
    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, styleModel.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    for p in filter(lambda p: p.requires_grad, genModel.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable style and generator params num : ', sum(params_num))

    # setup optimizer
    if opt.optim == 'adam':
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, opt.beta2),
                               weight_decay=opt.weight_decay)
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps,
                                   weight_decay=opt.weight_decay)
    print("SynthOptimizer:")
    print(optimizer)

    #filter parameters for Dis training
    dis_filtered_parameters = []
    dis_params_num = []
    for p in filter(lambda p: p.requires_grad, disModel.parameters()):
        dis_filtered_parameters.append(p)
        dis_params_num.append(np.prod(p.size()))
    print('Dis Trainable params num : ', sum(dis_params_num))

    # setup optimizer
    if opt.optim == 'adam':
        dis_optimizer = optim.Adam(dis_filtered_parameters,
                                   lr=opt.lr,
                                   betas=(opt.beta1, opt.beta2),
                                   weight_decay=opt.weight_decay)
    else:
        dis_optimizer = optim.Adadelta(dis_filtered_parameters,
                                       lr=opt.lr,
                                       rho=opt.rho,
                                       eps=opt.eps,
                                       weight_decay=opt.weight_decay)
    print("DisOptimizer:")
    print(dis_optimizer)
    ##---------------------------------------##
    """ final options """
    with open(os.path.join(opt.exp_dir, opt.exp_name, 'opt.txt'),
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    if opt.saved_synth_model != '' and opt.saved_synth_model != 'None':
        try:
            start_iter = int(
                opt.saved_synth_model.split('_')[-2].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    #get schedulers
    scheduler = get_scheduler(optimizer, opt)
    dis_scheduler = get_scheduler(dis_optimizer, opt)

    start_time = time.time()
    iteration = start_iter
    cntr = 0

    while (True):
        # train part
        if opt.lr_policy != "None":
            scheduler.step()
            dis_scheduler.step()

        image_input_tensors, image_gt_tensors, labels_1, labels_2 = iter(
            train_loader).next()

        cntr += 1

        image_input_tensors = image_input_tensors.to(device)
        image_gt_tensors = image_gt_tensors.to(device)
        batch_size = image_input_tensors.size(0)
        text_2, length_2 = converter.encode(
            labels_2, batch_max_length=opt.batch_max_length)

        #forward pass from style and word generator
        style = styleModel(image_input_tensors)

        images_recon_2 = genModel(style, text_2)

        #Domain discriminator: Dis update
        disModel.zero_grad()
        disCost = opt.disWeight * (disModel.module.calc_dis_loss(
            torch.cat((images_recon_2.detach(), image_input_tensors), dim=1),
            torch.cat((image_gt_tensors, image_input_tensors), dim=1)))

        disCost.backward()
        dis_optimizer.step()
        loss_avg_dis.add(disCost)

        # #[Style Encoder] + [Word Generator] update
        #Adversarial loss
        disGenCost = disModel.module.calc_gen_loss(
            torch.cat((images_recon_2, image_input_tensors), dim=1))

        #Input reconstruction loss
        recCost = recCriterion(images_recon_2, image_gt_tensors)

        #vgg loss
        vggPerCost, vggStyleCost = vggModel(image_gt_tensors, images_recon_2)

        cost = opt.reconWeight * recCost + opt.disWeight * disGenCost + opt.vggPerWeight * vggPerCost + opt.vggStyWeight * vggStyleCost

        styleModel.zero_grad()
        genModel.zero_grad()
        disModel.zero_grad()
        vggModel.zero_grad()

        cost.backward()
        optimizer.step()
        loss_avg.add(cost)

        #Individual losses
        loss_avg_gen.add(opt.disWeight * disGenCost)
        loss_avg_imgRecon.add(opt.reconWeight * recCost)
        loss_avg_vgg_per.add(opt.vggPerWeight * vggPerCost)
        loss_avg_vgg_sty.add(opt.vggStyWeight * vggStyleCost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'

            #Save training images
            os.makedirs(os.path.join(opt.exp_dir, opt.exp_name, 'trainImages',
                                     str(iteration)),
                        exist_ok=True)
            for trImgCntr in range(batch_size):
                try:
                    save_image(
                        tensor2im(image_input_tensors[trImgCntr].detach()),
                        os.path.join(
                            opt.exp_dir, opt.exp_name, 'trainImages',
                            str(iteration),
                            str(trImgCntr) + '_sInput_' + labels_1[trImgCntr] +
                            '.png'))
                    save_image(
                        tensor2im(image_gt_tensors[trImgCntr].detach()),
                        os.path.join(
                            opt.exp_dir, opt.exp_name, 'trainImages',
                            str(iteration),
                            str(trImgCntr) + '_csGT_' + labels_2[trImgCntr] +
                            '.png'))
                    save_image(
                        tensor2im(images_recon_2[trImgCntr].detach()),
                        os.path.join(
                            opt.exp_dir, opt.exp_name, 'trainImages',
                            str(iteration),
                            str(trImgCntr) + '_csRecon_' +
                            labels_2[trImgCntr] + '.png'))
                except:
                    print('Warning while saving training image')

            elapsed_time = time.time() - start_time
            # for log

            with open(os.path.join(opt.exp_dir, opt.exp_name, 'log_train.txt'),
                      'a') as log:
                styleModel.eval()
                genModel.eval()
                disModel.eval()

                with torch.no_grad():
                    valid_loss, infer_time, length_of_data = validation_synth_v3(
                        iteration, styleModel, genModel, vggModel, disModel,
                        recCriterion, valid_loader, converter, opt)

                styleModel.train()
                genModel.train()
                disModel.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train Synth loss: {loss_avg.val():0.5f}, \
                    Train Dis loss: {loss_avg_dis.val():0.5f}, Train Gen loss: {loss_avg_gen.val():0.5f},\
                    Train ImgRecon loss: {loss_avg_imgRecon.val():0.5f}, Train VGG-Per loss: {loss_avg_vgg_per.val():0.5f},\
                    Train VGG-Sty loss: {loss_avg_vgg_sty.val():0.5f}, Valid Synth loss: {valid_loss[1]:0.5f}, \
                    Valid Dis loss: {valid_loss[2]:0.5f}, Elapsed_time: {elapsed_time:0.5f}'

                #plotting
                lib.plot.plot(os.path.join(plotDir, 'Train-Synth-Loss'),
                              loss_avg.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-Dis-Loss'),
                              loss_avg_dis.val().item())

                lib.plot.plot(os.path.join(plotDir, 'Train-Gen-Loss'),
                              loss_avg_gen.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-ImgRecon1-Loss'),
                              loss_avg_imgRecon.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-VGG-Per-Loss'),
                              loss_avg_vgg_per.val().item())
                lib.plot.plot(os.path.join(plotDir, 'Train-VGG-Sty-Loss'),
                              loss_avg_vgg_sty.val().item())

                lib.plot.plot(os.path.join(plotDir, 'Valid-Synth-Loss'),
                              valid_loss[0].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-Dis-Loss'),
                              valid_loss[1].item())

                lib.plot.plot(os.path.join(plotDir, 'Valid-Gen-Loss'),
                              valid_loss[2].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-ImgRecon1-Loss'),
                              valid_loss[3].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-VGG-Per-Loss'),
                              valid_loss[4].item())
                lib.plot.plot(os.path.join(plotDir, 'Valid-VGG-Sty-Loss'),
                              valid_loss[5].item())

                print(loss_log)

                loss_avg.reset()
                loss_avg_dis.reset()

                loss_avg_gen.reset()
                loss_avg_imgRecon.reset()
                loss_avg_vgg_per.reset()
                loss_avg_vgg_sty.reset()

            lib.plot.flush()

        lib.plot.tick()

        # save model per 1e+5 iter.
        if (iteration) % 1e+4 == 0:
            torch.save(
                {
                    'styleModel': styleModel.state_dict(),
                    'genModel': genModel.state_dict(),
                    'disModel': disModel.state_dict()
                },
                os.path.join(opt.exp_dir, opt.exp_name,
                             'iter_' + str(iteration + 1) + '_synth.pth'))

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
        iteration += 1
Ejemplo n.º 24
0
def test(opt):
    """model configuration"""
    if "CTC" in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
        opt.sos_token_index = converter.dict["[SOS]"]
        opt.eos_token_index = converter.dict["[EOS]"]
    opt.num_class = len(converter.character)

    model = Model(opt)
    print(
        "model input parameters",
        opt.imgH,
        opt.imgW,
        opt.num_fiducial,
        opt.input_channel,
        opt.output_channel,
        opt.hidden_size,
        opt.num_class,
        opt.batch_max_length,
        opt.Transformation,
        opt.FeatureExtraction,
        opt.SequenceModeling,
        opt.Prediction,
    )
    model = torch.nn.DataParallel(model).to(device)

    # load model
    print("loading pretrained model from %s" % opt.saved_model)
    try:
        model.load_state_dict(torch.load(opt.saved_model, map_location=device))
    except:
        print(
            "*** pretrained model not match strictly *** and thus load_state_dict with strict=False mode"
        )
        # pretrained_state_dict = torch.load(opt.saved_model)
        # for name in pretrained_state_dict:
        #     print(name)
        model.load_state_dict(torch.load(opt.saved_model, map_location=device),
                              strict=False)

    opt.exp_name = "_".join(opt.saved_model.split("/")[1:])
    # print(model)
    """ keep evaluation model and result logs """
    os.makedirs(f"./result/{opt.exp_name}", exist_ok=True)
    # os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')
    """ setup loss """
    if "CTC" in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        # ignore [PAD] token
        criterion = torch.nn.CrossEntropyLoss(
            ignore_index=converter.dict["[PAD]"]).to(device)
    """ evaluation """
    model.eval()
    with torch.no_grad():
        if (
                opt.eval_type
        ):  # evaluate 6 benchmark evaluation datasets or 7 additionally collected evaluation datasets
            benchmark_all_eval(model, criterion, converter, opt)
        else:
            log = open(f"./result/{opt.exp_name}/log_evaluation.txt", "a")
            AlignCollate_eval = AlignCollate(opt, mode="test")
            eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data,
                                                            opt=opt,
                                                            mode="test")
            eval_loader = torch.utils.data.DataLoader(
                eval_data,
                batch_size=opt.batch_size,
                shuffle=False,
                num_workers=int(opt.workers),
                collate_fn=AlignCollate_eval,
                pin_memory=True,
            )
            _, score_by_best_model, _, _, _, _, _ = validation(
                model, criterion, eval_loader, converter, opt)
            log.write(eval_data_log)
            print(f"{score_by_best_model:0.2f}")
            log.write(f"{score_by_best_model:0.2f}\n")
            log.close()
def train(opt):
    os.makedirs(opt.log, exist_ok=True)
    writer = SummaryWriter(opt.log)
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)

    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """

    ctc_converter = CTCLabelConverter(opt.character)
    attn_converter = AttnLabelConverter(opt.character)
    opt.num_class = len(attn_converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)

    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    """ setup loss """
    loss_avg = Averager()
    ctc_loss = torch.nn.CTCLoss(zero_infinity=True).to(device)
    attn_loss = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter
    pbar = tqdm(range(opt.num_iter))

    for iteration in pbar:

        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        ctc_text, ctc_length = ctc_converter.encode(
            labels, batch_max_length=opt.batch_max_length)
        attn_text, attn_length = attn_converter.encode(
            labels, batch_max_length=opt.batch_max_length)

        batch_size = image.size(0)

        preds, refiner = model(image, attn_text[:, :-1])

        refiner_size = torch.IntTensor([refiner.size(1)] * batch_size)
        refiner = refiner.log_softmax(2).permute(1, 0, 2)
        refiner_loss = ctc_loss(refiner, ctc_text, refiner_size, ctc_length)

        total_loss = opt.lambda_ctc * refiner_loss
        target = attn_text[:, 1:]  # without [GO] Symbol
        for pred in preds:
            total_loss += opt.lambda_attn * attn_loss(
                pred.view(-1, pred.shape[-1]),
                target.contiguous().view(-1))

        model.zero_grad()
        total_loss.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()
        loss_avg.add(total_loss)
        if loss_avg.val() <= 0.6:
            opt.grad_clip = 2
        if loss_avg.val() <= 0.3:
            opt.grad_clip = 1

        preds = (p.cpu() for p in preds)
        refiner = refiner.cpu()
        image = image.cpu()
        torch.cuda.empty_cache()

        writer.add_scalar('train_loss', loss_avg.val(), iteration)
        pbar.set_description('Iteration {0}/{1}, AvgLoss {2}'.format(
            iteration, opt.num_iter, loss_avg.val()))

        # validation part
        if (iteration + 1) % opt.valInterval == 0 or iteration == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.exp_name}/log_train.txt',
                      'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, attn_loss, valid_loader, attn_converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                writer.add_scalar('Val_loss', valid_loss)
                pbar.set_description(loss_log)
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_accuracy_{str(best_accuracy)}.pth'
                    )
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.exp_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                # print(loss_model_log)

                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if 'Attn' or 'Transformer' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                log.write(predicted_result_log + '\n')

        # save model per 1e+3 iter.
        if (iteration + 1) % 1e+3 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.exp_name}/SCATTER_STR.pth')

        if (iteration + 1) == opt.num_iter:
            print('end the training')
            sys.exit()
Ejemplo n.º 26
0
def train(opt, show_number=2, amp=False):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print(
            'Filtering the images containing characters which are not in opt.character'
        )
        print(
            'Filtering the images whose label is longer than opt.batch_max_length'
        )

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt',
               'a',
               encoding="utf8")
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD,
                                      contrast_adjust=opt.contrast_adjust)
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=min(32, opt.batch_size),
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        prefetch_factor=512,
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    if opt.saved_model != '':
        pretrained_dict = torch.load(opt.saved_model)
        if opt.new_prediction:
            model.Prediction = nn.Linear(
                model.SequenceModeling_output,
                len(pretrained_dict['module.Prediction.weight']))

        model = torch.nn.DataParallel(model).to(device)
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(pretrained_dict, strict=False)
        else:
            model.load_state_dict(pretrained_dict)
        if opt.new_prediction:
            model.module.Prediction = nn.Linear(
                model.module.SequenceModeling_output, opt.num_class)
            for name, param in model.module.Prediction.named_parameters():
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            model = model.to(device)
    else:
        # weight initialization
        for name, param in model.named_parameters():
            if 'localization_fc2' in name:
                print(f'Skip {name} as it is already initialized')
                continue
            try:
                if 'bias' in name:
                    init.constant_(param, 0.0)
                elif 'weight' in name:
                    init.kaiming_normal_(param)
            except Exception as e:  # for batchnorm.
                if 'weight' in name:
                    param.data.fill_(1)
                continue
        model = torch.nn.DataParallel(model).to(device)

    model.train()
    print("Model:")
    print(model)
    count_parameters(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # freeze some layers
    try:
        if opt.freeze_FeatureFxtraction:
            for param in model.module.FeatureExtraction.parameters():
                param.requires_grad = False
        if opt.freeze_SequenceModeling:
            for param in model.module.SequenceModeling.parameters():
                param.requires_grad = False
    except:
        pass

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.optim == 'adam':
        #optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
        optimizer = optim.Adam(filtered_parameters)
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a',
              encoding="utf8") as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    scaler = GradScaler()
    t1 = time.time()

    while (True):
        # train part
        optimizer.zero_grad(set_to_none=True)

        if amp:
            with autocast():
                image_tensors, labels = train_dataset.get_batch()
                image = image_tensors.to(device)
                text, length = converter.encode(
                    labels, batch_max_length=opt.batch_max_length)
                batch_size = image.size(0)

                if 'CTC' in opt.Prediction:
                    preds = model(image, text).log_softmax(2)
                    preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                    preds = preds.permute(1, 0, 2)
                    torch.backends.cudnn.enabled = False
                    cost = criterion(preds, text.to(device),
                                     preds_size.to(device), length.to(device))
                    torch.backends.cudnn.enabled = True
                else:
                    preds = model(image,
                                  text[:, :-1])  # align with Attention.forward
                    target = text[:, 1:]  # without [GO] Symbol
                    cost = criterion(preds.view(-1, preds.shape[-1]),
                                     target.contiguous().view(-1))
            scaler.scale(cost).backward()
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
            scaler.step(optimizer)
            scaler.update()
        else:
            image_tensors, labels = train_dataset.get_batch()
            image = image_tensors.to(device)
            text, length = converter.encode(
                labels, batch_max_length=opt.batch_max_length)
            batch_size = image.size(0)
            if 'CTC' in opt.Prediction:
                preds = model(image, text).log_softmax(2)
                preds_size = torch.IntTensor([preds.size(1)] * batch_size)
                preds = preds.permute(1, 0, 2)
                torch.backends.cudnn.enabled = False
                cost = criterion(preds, text.to(device), preds_size.to(device),
                                 length.to(device))
                torch.backends.cudnn.enabled = True
            else:
                preds = model(image,
                              text[:, :-1])  # align with Attention.forward
                target = text[:, 1:]  # without [GO] Symbol
                cost = criterion(preds.view(-1, preds.shape[-1]),
                                 target.contiguous().view(-1))
            cost.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
            optimizer.step()
        loss_avg.add(cost)

        # validation part
        if (i % opt.valInterval == 0) and (i != 0):
            print('training time: ', time.time() - t1)
            t1 = time.time()
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a',
                      encoding="utf8") as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels,\
                    infer_time, length_of_data = validation(model, criterion, valid_loader, converter, opt, device)
                model.train()

                # training loss and validation loss
                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.4f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.4f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'

                #show_number = min(show_number, len(labels))

                start = random.randint(0, len(labels) - show_number)
                for gt, pred, confidence in zip(
                        labels[start:start + show_number],
                        preds[start:start + show_number],
                        confidence_score[start:start + show_number]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')
                print('validation time: ', time.time() - t1)
                t1 = time.time()
        # save model per 1e+4 iter.
        if (i + 1) % 1e+4 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
Ejemplo n.º 27
0
def train(opt):
    """ dataset preparation """
    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')

    #import ipdb;ipdb.set_trace()

    train_dataset = Batch_Balanced_Dataset(opt)

    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    print('-' * 80)
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU

    model = torch.nn.DataParallel(model).to(device)
    model.train()

    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        model.load_state_dict(torch.load(opt.continue_model))
    print("Model:")
    #print(model)
    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a',
              encoding="utf-8") as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0
    if opt.continue_model != '':
        start_iter = int(opt.continue_model.split('_')[-1].split('.')[0])
        print(f'continue to train, start_iter: {start_iter}')

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    i = start_iter

    while (True):
        # train part
        image_tensors, labels = train_dataset.get_batch()

        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)
        #import ipdb;ipdb.set_trace()

        if 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)

            preds_size = torch.IntTensor([preds.size(1)] *
                                         batch_size).to(device)
            preds = preds.permute(1, 0, 2)  # to use CTCLoss format

            # To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text, preds_size, length)
            torch.backends.cudnn.enabled = True

        else:

            preds = model(image, text[:, :-1])  # align with Attention.forward

            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            print(
                f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
            )
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a',
                      encoding="utf-8") as log:
                log.write(
                    f'[{i}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                )
                loss_avg.reset()

                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                for pred, gt in zip(preds[:5], labels[:5]):
                    if 'Attn' in opt.Prediction:
                        pred = pred[:pred.find('[s]')]
                        gt = gt[:gt.find('[s]')]
                    print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                    #pred = pred.encode('utf-8')
                    #gt = gt.encode('utf-8')
                    log.write(
                        f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                valid_log = f'[{i}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                print(valid_log)
                log.write(valid_log + '\n')

                # keep best accuracy model
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED < best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                print(best_model_log)
                log.write(best_model_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            torch.save(model.state_dict(),
                       f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
Ejemplo n.º 28
0
def train(opt):
    """ dataset preparation """
    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    valid_dataset = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        # 'True' to check training progress with validation function.
        shuffle=True,
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True)
    print('-' * 80)
    """ model configuration """
    if 'Transformer' in opt.SequenceModeling:
        converter = TransformerLabelConverter(opt.character)
    elif 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial,
          opt.input_channel, opt.output_channel, opt.hidden_size,
          opt.num_class, opt.batch_max_length, opt.Transformation,
          opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue
    """ setup loss """
    if 'Transformer' in opt.SequenceModeling:
        criterion = transformer_loss
    elif 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).cuda()
    else:
        # ignore [GO] token = ignore index 0
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).cuda()
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    elif 'Transformer' in opt.SequenceModeling and opt.use_scheduled_optim:
        optimizer = optim.Adam(filtered_parameters,
                               betas=(0.9, 0.98),
                               eps=1e-09)
        optimizer_schedule = ScheduledOptim(optimizer, opt.d_model,
                                            opt.n_warmup_steps)
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)
    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt',
              'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)
    """ start training """
    start_iter = 0

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = 1e+6
    pickle.load = partial(pickle.load, encoding="latin1")
    pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
    if opt.load_weights != '' and check_isfile(opt.load_weights):
        # load pretrained weights but ignore layers that don't match in size
        checkpoint = torch.load(opt.load_weights, pickle_module=pickle)
        if type(checkpoint) == dict:
            pretrain_dict = checkpoint['state_dict']
        else:
            pretrain_dict = checkpoint
        model_dict = model.state_dict()
        pretrain_dict = {
            k: v
            for k, v in pretrain_dict.items()
            if k in model_dict and model_dict[k].size() == v.size()
        }
        model_dict.update(pretrain_dict)
        model.load_state_dict(model_dict)
        print("Loaded pretrained weights from '{}'".format(opt.load_weights))
        del checkpoint
        torch.cuda.empty_cache()
    if opt.continue_model != '':
        print(f'loading pretrained model from {opt.continue_model}')
        checkpoint = torch.load(opt.continue_model)
        print(checkpoint.keys())
        model.load_state_dict(checkpoint['state_dict'])
        start_iter = checkpoint['step'] + 1
        print('continue to train start_iter: ', start_iter)
        if 'optimizer' in checkpoint.keys():
            optimizer.load_state_dict(checkpoint['optimizer'])
            for state in optimizer.state.values():
                for k, v in state.items():
                    if isinstance(v, torch.Tensor):
                        state[k] = v.cuda()
        if 'best_accuracy' in checkpoint.keys():
            best_accuracy = checkpoint['best_accuracy']
        if 'best_norm_ED' in checkpoint.keys():
            best_norm_ED = checkpoint['best_norm_ED']
        del checkpoint
        torch.cuda.empty_cache()
    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).cuda()
    model.train()
    print("Model size:", count_num_param(model), 'M')
    if 'Transformer' in opt.SequenceModeling and opt.use_scheduled_optim:
        optimizer_schedule.n_current_steps = start_iter

    for i in tqdm(range(start_iter, opt.num_iter)):
        for p in model.parameters():
            p.requires_grad = True

        cpu_images, cpu_texts = train_dataset.get_batch()
        image = cpu_images.cuda()
        if 'Transformer' in opt.SequenceModeling:
            text, length, text_pos = converter.encode(cpu_texts,
                                                      opt.batch_max_length)
        elif 'CTC' in opt.Prediction:
            text, length = converter.encode(cpu_texts)
        else:
            text, length = converter.encode(cpu_texts, opt.batch_max_length)
        batch_size = image.size(0)

        if 'Transformer' in opt.SequenceModeling:
            preds = model(image, text, tgt_pos=text_pos)
            target = text[:, 1:]  # without <s> Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))
        elif 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds = preds.permute(1, 0, 2)  # to use CTCLoss format
            cost = criterion(preds, text, preds_size, length)
        else:
            preds = model(image, text)
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()

        if 'Transformer' in opt.SequenceModeling and opt.use_scheduled_optim:
            optimizer_schedule.step_and_update_lr()
        elif 'Transformer' in opt.SequenceModeling:
            optimizer.step()
        else:
            # gradient clipping with 5 (Default)
            torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
            optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i > 0 and (i + 1) % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            print(
                f'[{i+1}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}'
            )
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt',
                      'a') as log:
                log.write(
                    f'[{i+1}/{opt.num_iter}] Loss: {loss_avg.val():0.5f} elapsed_time: {elapsed_time:0.5f}\n'
                )
                loss_avg.reset()

                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, gts, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                for pred, gt in zip(preds[:5], gts[:5]):
                    if 'Transformer' in opt.SequenceModeling:
                        pred = pred[:pred.find('</s>')]
                        gt = gt[:gt.find('</s>')]
                    elif 'Attn' in opt.Prediction:
                        pred = pred[:pred.find('[s]')]
                        gt = gt[:gt.find('[s]')]

                    print(f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}')
                    log.write(
                        f'{pred:20s}, gt: {gt:20s},   {str(pred == gt)}\n')

                valid_log = f'[{i+1}/{opt.num_iter}] valid loss: {valid_loss:0.5f}'
                valid_log += f' accuracy: {current_accuracy:0.3f}, norm_ED: {current_norm_ED:0.2f}'
                print(valid_log)
                log.write(valid_log + '\n')

                # keep best accuracy model
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    state_dict = model.module.state_dict()
                    save_checkpoint(
                        {
                            'best_accuracy': best_accuracy,
                            'state_dict': state_dict,
                        }, False,
                        f'./saved_models/{opt.experiment_name}/best_accuracy.pth'
                    )
                if current_norm_ED < best_norm_ED:
                    best_norm_ED = current_norm_ED
                    state_dict = model.module.state_dict()
                    save_checkpoint(
                        {
                            'best_norm_ED': best_norm_ED,
                            'state_dict': state_dict,
                        }, False,
                        f'./saved_models/{opt.experiment_name}/best_norm_ED.pth'
                    )
                    # torch.save(
                    #     model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'best_accuracy: {best_accuracy:0.3f}, best_norm_ED: {best_norm_ED:0.2f}'
                print(best_model_log)
                log.write(best_model_log + '\n')

        # save model per 1000 iter.
        if (i + 1) % 1000 == 0:
            state_dict = model.module.state_dict()
            optimizer_state_dict = optimizer.state_dict()
            save_checkpoint(
                {
                    'state_dict': state_dict,
                    'optimizer': optimizer_state_dict,
                    'step': i,
                    'best_accuracy': best_accuracy,
                    'best_norm_ED': best_norm_ED,
                }, False,
                f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')
def train(opt, tb):
    """ dataset preparation """
    if not opt.data_filtering_off:
        print('Filtering the images containing characters which are not in opt.character')
        print('Filtering the images whose label is longer than opt.batch_max_length')
        # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130

    opt.select_data = opt.select_data.split('-')
    opt.batch_ratio = opt.batch_ratio.split('-')
    train_dataset = Batch_Balanced_Dataset(opt)

    log = open(f'./saved_models/{opt.experiment_name}/log_dataset.txt', 'a')
    AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
    valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset, batch_size=opt.batch_size,
        shuffle=True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid, pin_memory=True)
    log.write(valid_dataset_log)
    print('-' * 80)
    log.write('-' * 80 + '\n')
    log.close()
    
    """ model configuration """
    if 'CTC' in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)

    if opt.rgb:
        opt.input_channel = 3
    model = Model(opt)
    print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
          opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
          opt.SequenceModeling, opt.Prediction)

    # weight initialization
    for name, param in model.named_parameters():
        if 'localization_fc2' in name:
            print(f'Skip {name} as it is already initialized')
            continue
        try:
            if 'bias' in name:
                init.constant_(param, 0.0)
            elif 'weight' in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if 'weight' in name:
                param.data.fill_(1)
            continue

    # data parallel for multi-GPU
    model = torch.nn.DataParallel(model).to(device)
    model.train()
    if opt.saved_model != '':
        print(f'loading pretrained model from {opt.saved_model}')
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    print(model)

    """ setup loss """
    if 'CTC' in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    print("~~~~~~~~~~~~Gradient Descent~~~~~~~~~~~~~")
    #print(model.parameters())
    #print(model.)
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print('Filtered parameters for gradient descent: \n', len(filtered_parameters))
    print('Trainable params num : ', sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # setup optimizer
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    """ final options """
    # print(opt)
    with open(f'./saved_models/{opt.experiment_name}/opt.txt', 'a') as opt_file:
        opt_log = '------------ Options -------------\n'
        args = vars(opt)
        for k, v in args.items():
            opt_log += f'{str(k)}: {str(v)}\n'
        opt_log += '---------------------------------------\n'
        print(opt_log)
        opt_file.write(opt_log)

    """ start training """
    start_iter = 0
    if opt.saved_model != '':
        try:
            start_iter = int(opt.saved_model.split('_')[-1].split('.')[0])
            print(f'continue to train, start_iter: {start_iter}')
        except:
            pass

    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    i = start_iter

    while(True):
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels, batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if 'CTC' in opt.Prediction:
            preds = model(image, text).log_softmax(2)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds = preds.permute(1, 0, 2)

            # (ctc_a) For PyTorch 1.2.0 and 1.3.0. To avoid ctc_loss issue, disabled cudnn for the computation of the ctc_loss
            # https://github.com/jpuigcerver/PyLaia/issues/16
            torch.backends.cudnn.enabled = False
            cost = criterion(preds, text.to(device), preds_size.to(device), length.to(device))
            torch.backends.cudnn.enabled = True

            # # (ctc_b) To reproduce our pretrained model / paper, use our previous code (below code) instead of (ctc_a).
            # # With PyTorch 1.2.0, the below code occurs NAN, so you may use PyTorch 1.1.0.
            # # Thus, the result of CTCLoss is different in PyTorch 1.1.0 and PyTorch 1.2.0.
            # # See https://github.com/clovaai/deep-text-recognition-benchmark/issues/56#issuecomment-526490707
            # cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            print(preds[0][0])
            target = text[:, 1:]  # without [GO] Symbol
            print(target[0])
            cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if i % opt.valInterval == 0:
            elapsed_time = time.time() - start_time
            # for log
            with open(f'./saved_models/{opt.experiment_name}/log_train.txt', 'a') as log:
                model.eval()
                with torch.no_grad():
                    valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation(
                        model, criterion, valid_loader, converter, opt)
                model.train()

                # training loss and validation loss
                loss_log = f'[{i}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}'
                tb.add_scalar('Training Loss vs Iteration', loss_avg.val(), i)              # Record to Tensorboard
                tb.add_scalar('Validation Loss vs Iteration', valid_loss, i)                # Record to Tensorboard
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'
                tb.add_scalar('Current Accuracy vs Iteration', current_accuracy, i)         # Record to Tensorboard
                tb.add_scalar('Current Norm ED vs Iteration', current_norm_ED, i)           # Record to Tensorboard            

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_accuracy.pth')
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(model.state_dict(), f'./saved_models/{opt.experiment_name}/best_norm_ED.pth')
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}'
                print(loss_model_log)
                log.write(loss_model_log + '\n')

                # show some predicted results
                dashed_line = '-' * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n'
                for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]):
                    if 'Attn' in opt.Prediction:
                        gt = gt[:gt.find('[s]')]
                        pred = pred[:pred.find('[s]')]

                    predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n'
                predicted_result_log += f'{dashed_line}'
                print(predicted_result_log)
                log.write(predicted_result_log + '\n')

        # save model per 1e+5 iter.
        if (i + 1) % 1e+5 == 0:
            torch.save(
                model.state_dict(), f'./saved_models/{opt.experiment_name}/iter_{i+1}.pth')

        if i == opt.num_iter:
            print('end the training')
            sys.exit()
        i += 1
Ejemplo n.º 30
0
def train(opt):
    """ training pipeline for our character recognition model """
    if not opt.data_filtering_off:
        print(
            "Filtering the images containing characters which are not in opt.character"
        )
        print(
            "Filtering the images whose label is longer than opt.batch_max_length"
        )

    opt.select_data = opt.select_data.split("-")
    opt.batch_ratio = opt.batch_ratio.split("-")
    train_dataset = Batch_Balanced_Dataset(opt)

    # Logging the experiment, so that we can refer to the performance of previous runs
    log = open(f"./saved_models/{opt.exp_name}/log_dataset.txt", "a")
    # Using params from user input to collation function for dataloader
    AlignCollate_valid = AlignCollate(imgH=opt.imgH,
                                      imgW=opt.imgW,
                                      keep_ratio_with_pad=opt.PAD)
    # Defining our validation dataloader
    valid_dataset, valid_dataset_log = hierarchical_dataset(
        root=opt.valid_data, opt=opt)
    valid_loader = torch.utils.data.DataLoader(
        valid_dataset,
        batch_size=opt.batch_size,
        shuffle=
        True,  # 'True' to check training progress with validation function.
        num_workers=int(opt.workers),
        collate_fn=AlignCollate_valid,
        pin_memory=True,
    )
    log.write(valid_dataset_log)
    print("-" * 80)
    log.write("-" * 80 + "\n")
    log.close()

    # Using either CTC or Attention for char predictions
    if "CTC" in opt.Prediction:
        converter = CTCLabelConverter(opt.character)
    else:
        converter = AttnLabelConverter(opt.character)
    opt.num_class = len(converter.character)
    # Runnning our OCR model in grayscale or RGB
    if opt.rgb:
        opt.input_channel = 3
    # Defining our model using user inputs
    model = Model(opt)
    print(
        "model input parameters",
        opt.imgH,
        opt.imgW,
        opt.num_fiducial,
        opt.input_channel,
        opt.output_channel,
        opt.hidden_size,
        opt.num_class,
        opt.batch_max_length,
        opt.Transformation,
        opt.FeatureExtraction,
        opt.SequenceModeling,
        opt.Prediction,
    )

    # weight initialization
    for name, param in model.named_parameters():
        if "localization_fc2" in name:
            print(f"Skip {name} as it is already initialized")
            continue
        try:
            if "bias" in name:
                init.constant_(param, 0.0)
            elif "weight" in name:
                init.kaiming_normal_(param)
        except Exception as e:  # for batchnorm.
            if "weight" in name:
                param.data.fill_(1)
            continue
    # Putting model in training mode
    model.train()
    # Using finetuning saved model from previous runs
    if opt.saved_model != "":
        print(f"loading pretrained model from {opt.saved_model}")
        if opt.FT:
            model.load_state_dict(torch.load(opt.saved_model), strict=False)
        else:
            model.load_state_dict(torch.load(opt.saved_model))
    print("Model:")
    # print(model)
    # Sending model to cpu or gpu, depending upon the avialbility
    model.to(device)

    # Setting up loss functions in the case of either CTC or Attention
    if "CTC" in opt.Prediction:
        criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
    else:
        criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(
            device)  # ignore [GO] token = ignore index 0
    # loss averager
    loss_avg = Averager()

    # filter that only require gradient decent
    filtered_parameters = []
    params_num = []
    for p in filter(lambda p: p.requires_grad, model.parameters()):
        filtered_parameters.append(p)
        params_num.append(np.prod(p.size()))
    print("Trainable params num : ", sum(params_num))
    # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())]

    # Setup of optimizer to be used
    if opt.adam:
        optimizer = optim.Adam(filtered_parameters,
                               lr=opt.lr,
                               betas=(opt.beta1, 0.999))
    else:
        optimizer = optim.Adadelta(filtered_parameters,
                                   lr=opt.lr,
                                   rho=opt.rho,
                                   eps=opt.eps)
    print("Optimizer:")
    print(optimizer)

    # print(opt)
    with open(f"./saved_models/{opt.exp_name}/opt.txt", "a") as opt_file:
        opt_log = "------------ Options -------------\n"
        args = vars(opt)
        for k, v in args.items():
            opt_log += f"{str(k)}: {str(v)}\n"
        opt_log += "---------------------------------------\n"
        print(opt_log)
        opt_file.write(opt_log)

    # Training iteration starts here
    start_iter = 0
    if opt.saved_model != "":
        try:
            start_iter = int(opt.saved_model.split("_")[-1].split(".")[0])
            print(f"continue to train, start_iter: {start_iter}")
        except:
            pass

    # Setting up initial metrics results and initializing the timer
    start_time = time.time()
    best_accuracy = -1
    best_norm_ED = -1
    iteration = start_iter

    while True:
        # train part
        image_tensors, labels = train_dataset.get_batch()
        image = image_tensors.to(device)
        text, length = converter.encode(labels,
                                        batch_max_length=opt.batch_max_length)
        batch_size = image.size(0)

        if "CTC" in opt.Prediction:
            preds = model(image, text)
            preds_size = torch.IntTensor([preds.size(1)] * batch_size)
            preds = preds.log_softmax(2).permute(1, 0, 2)
            cost = criterion(preds, text, preds_size, length)

        else:
            preds = model(image, text[:, :-1])  # align with Attention.forward
            target = text[:, 1:]  # without [GO] Symbol
            cost = criterion(preds.view(-1, preds.shape[-1]),
                             target.contiguous().view(-1))

        model.zero_grad()
        cost.backward()
        torch.nn.utils.clip_grad_norm_(
            model.parameters(),
            opt.grad_clip)  # gradient clipping with 5 (Default)
        optimizer.step()

        loss_avg.add(cost)

        # validation part
        if (
                iteration + 1
        ) % opt.valInterval == 0 or iteration == 0:  # To see training progress, we also conduct validation when 'iteration == 0'
            elapsed_time = time.time() - start_time
            # for log
            with open(f"./saved_models/{opt.exp_name}/log_train.txt",
                      "a") as log:
                model.eval()
                with torch.no_grad():
                    (
                        valid_loss,
                        current_accuracy,
                        current_norm_ED,
                        preds,
                        confidence_score,
                        labels,
                        infer_time,
                        length_of_data,
                    ) = validation(model, criterion, valid_loader, converter,
                                   opt)
                model.train()

                # training loss and validation loss
                loss_log = f"[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}"
                loss_avg.reset()

                current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}'

                # keep best accuracy model (on valid dataset)
                if current_accuracy > best_accuracy:
                    best_accuracy = current_accuracy
                    torch.save(
                        model.state_dict(),
                        f"./saved_models/{opt.exp_name}/best_accuracy.pth",
                    )
                if current_norm_ED > best_norm_ED:
                    best_norm_ED = current_norm_ED
                    torch.save(
                        model.state_dict(),
                        f"./saved_models/{opt.exp_name}/best_norm_ED.pth",
                    )
                best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}'

                loss_model_log = f"{loss_log}\n{current_model_log}\n{best_model_log}"
                print(loss_model_log)
                log.write(loss_model_log + "\n")

                # show some predicted results
                dashed_line = "-" * 80
                head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F'
                predicted_result_log = f"{dashed_line}\n{head}\n{dashed_line}\n"
                for gt, pred, confidence in zip(labels[:5], preds[:5],
                                                confidence_score[:5]):
                    if "Attn" in opt.Prediction:
                        gt = gt[:gt.find("[s]")]
                        pred = pred[:pred.find("[s]")]

                    predicted_result_log += f"{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n"
                predicted_result_log += f"{dashed_line}"
                print(predicted_result_log)
                log.write(predicted_result_log + "\n")

        # save model per 1e+5 iter.
        if (iteration + 1) % 1e5 == 0:
            torch.save(
                model.state_dict(),
                f"./saved_models/{opt.exp_name}/iter_{iteration+1}.pth",
            )

        if (iteration + 1) == opt.num_iter:
            print("end the training")
            sys.exit()
        iteration += 1