Ejemplo n.º 1
0
def getDataloader(dataset,args):
    trainset = CSL_Isolated_Openpose('trainvaltest',is_aug=True)
    train_sampler = CategoriesSampler_train(trainset.label, 100,
                            args.train_way, args.shot, args.query, args.n_base, args.n_reserve)
    train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler,
                            num_workers=args.num_workers, pin_memory=True)
    valset = CSL_Isolated_Openpose('test')
    val_sampler = CategoriesSampler_val(valset.label, 100,
                            args.test_way, args.shot, args.query_val)
    val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler,
                            num_workers=args.num_workers, pin_memory=True)
    return train_loader, val_loader
Ejemplo n.º 2
0
def getValloader(dataset,args):
    valset = CSL_Isolated_Openpose('test')
    val_sampler = CategoriesSampler_val(valset.label, 600,
                            args.test_way, args.shot, args.query_val)
    val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler,
                            num_workers=args.num_workers, pin_memory=True)
    return val_loader
Ejemplo n.º 3
0
# Use specific gpus
os.environ["CUDA_VISIBLE_DEVICES"]=device_list
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Use writer to record
writer = SummaryWriter(os.path.join(summary_name, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))))

best_prec1 = 0.0
start_epoch = 0

# Train with Transformer
if __name__ == '__main__':
    # Load data
    trainset = CSL_Isolated_Openpose(skeleton_root=skeleton_root,list_file=train_file,
        length=length)
    devset = CSL_Isolated_Openpose(skeleton_root=skeleton_root,list_file=val_file,
        length=length)
    print("Dataset samples: {}".format(len(trainset)+len(devset)))
    trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
    testloader = DataLoader(devset, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True)
    # Create model
    model = lstm(input_size=num_joints*2,hidden_size=512,hidden_dim=512,
        num_layers=3,dropout_rate=dropout,num_classes=num_class,
        bidirectional=True).to(device)
    if checkpoint is not None:
        start_epoch, best_prec1 = resume_model(model,checkpoint)
    # Run the model parallelly
    if torch.cuda.device_count() > 1:
        print("Using {} GPUs".format(torch.cuda.device_count()))
        model = nn.DataParallel(model)
Ejemplo n.º 4
0
# Get arguments
args = Arguments()

# Use specific gpus
os.environ["CUDA_VISIBLE_DEVICES"]=device_list
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

best_prec1 = 0.0
start_epoch = 0

# Train with Transformer
if __name__ == '__main__':
    # Load data
    trainset = CSL_Isolated_Openpose(skeleton_root=skeleton_root,list_file=train_file,
        length=length,is_normalize=False)
    devset = CSL_Isolated_Openpose(skeleton_root=skeleton_root,list_file=val_file,
        length=length,is_normalize=False)
    print("Dataset samples: {}".format(len(trainset)+len(devset)))
    trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True)
    testloader = DataLoader(devset, batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)
    # Create model
    model = VAE(num_class,dropout=dropout).to(device)
    if checkpoint is not None:
        start_epoch, best_prec1 = resume_model(model,checkpoint)
    # Run the model parallelly
    if torch.cuda.device_count() > 1:
        print("Using {} GPUs".format(torch.cuda.device_count()))
        model = nn.DataParallel(model)
    # Create loss criterion & optimizer
    criterion = nn.CrossEntropyLoss()
Ejemplo n.º 5
0
# Get args
args = Arguments(shot, dataset)
# Use specific gpus
os.environ["CUDA_VISIBLE_DEVICES"] = device_list
# Device setting
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Use writer to record
writer = SummaryWriter(
    os.path.join(
        'runs/hcn_gen',
        time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))))

# Prepare dataset & dataloader
trainset = CSL_Isolated_Openpose('trainvaltest')
train_sampler = PretrainSampler(trainset.label, args.shot, args.n_base,
                                batch_size)
train_loader = DataLoader(dataset=trainset,
                          batch_sampler=train_sampler,
                          num_workers=num_workers,
                          pin_memory=True)
valset = CSL_Isolated_Openpose('trainvaltest')
val_sampler = PretrainSampler(valset.label, args.shot, args.n_base, batch_size)
val_loader = DataLoader(dataset=valset,
                        batch_sampler=val_sampler,
                        num_workers=num_workers,
                        pin_memory=True)
model = CNN_GEN(out_dim=args.num_class, f_dim=args.feature_dim).to(device)
# Resume model
if hcn_ckpt is not None: