Ejemplo n.º 1
0
class ImageClassifier(object):
    """
      The class for the training phase of Image classification.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.cls_model_manager = ModelManager(configer)
        self.cls_data_loader = DataLoader(configer)
        self.cls_running_score = ClsRunningScore(configer)

        self.cls_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.cls_net = self.cls_model_manager.get_cls_model()
        self.cls_net = RunnerHelper.load_net(self, self.cls_net)
        self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.cls_data_loader.get_trainloader()
        self.val_loader = self.cls_data_loader.get_valloader()

        self.ce_loss = self.cls_model_manager.get_cls_loss()

    def _get_parameters(self):

        return self.cls_net.parameters()

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.cls_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1

        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, solver_dict=self.configer.get('solver'))
            self.data_time.update(time.time() - start_time)
            # Forward pass.
            out_dict = self.cls_net(data_dict)
            # Compute the loss of the train batch & backward.

            loss = self.ce_loss(out_dict, data_dict, gathered=self.configer.get('network', 'gathered'))

            self.train_losses.update(loss.item(), len(DCHelper.tolist(data_dict['meta'])))
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get('solver', 'display_iter') == 0:
                Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t'
                         'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                         'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                         'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'.format(
                    self.runner_state['epoch'], self.runner_state['iters'],
                    self.configer.get('solver', 'display_iter'),
                    RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time,
                    data_time=self.data_time, loss=self.train_losses))

                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get('solver', 'test_interval') == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.cls_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                # Forward pass.
                out_dict = self.cls_net(data_dict)
                # Compute the loss of the val batch.
                loss = self.ce_loss(out_dict, data_dict, gathered=self.configer.get('network', 'gathered'))
                out_dict = RunnerHelper.gather(self, out_dict)
                self.cls_running_score.update(out_dict['out'], DCHelper.tolist(data_dict['labels']))
                self.val_losses.update(loss.item(), len(DCHelper.tolist(data_dict['meta'])))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self, self.cls_net, performance=self.cls_running_score.get_top1_acc())
            self.runner_state['performance'] = self.cls_running_score.get_top1_acc()
            # Print the log info & reset the states.
            Log.info('Test Time {batch_time.sum:.3f}s'.format(batch_time=self.batch_time))
            Log.info('TestLoss = {loss.avg:.8f}'.format(loss=self.val_losses))
            Log.info('Top1 ACC = {}'.format(self.cls_running_score.get_top1_acc()))
            Log.info('Top5 ACC = {}'.format(self.cls_running_score.get_top5_acc()))
            self.batch_time.reset()
            self.val_losses.reset()
            self.cls_running_score.reset()
            self.cls_net.train()
class ImageClassifier(object):
    """
      The class for the training phase of Image classification.
    """
    def __init__(self, configer):
        self.configer = configer
        self.runner_state = dict()

        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = DictAverageMeter()
        self.val_losses = DictAverageMeter()
        self.cls_model_manager = ModelManager(configer)
        self.cls_data_loader = DataLoader(configer)
        self.running_score = ClsRunningScore(configer)

        self.cls_net = self.cls_model_manager.get_cls_model()
        self.solver_dict = self.configer.get('solver')
        self.cls_net = RunnerHelper.load_net(self, self.cls_net)
        self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.solver_dict)
        self.train_loader = self.cls_data_loader.get_trainloader()
        self.val_loader = self.cls_data_loader.get_valloader()
        self.loss = self.cls_model_manager.get_cls_loss()

    def _init_model(self):
        self.cls_net = self.cls_model_manager.get_cls_model()
        self.cls_net = RunnerHelper.load_net(self, self.cls_net)
        self.optimizer, self.scheduler = Trainer.init(self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.cls_data_loader.get_trainloader()
        self.val_loader = self.cls_data_loader.get_valloader()

        self.ce_loss = self.cls_model_manager.get_cls_loss()

    def _get_parameters(self):
        if self.solver_dict.get('optim.wdall', default=True):
            lr_1 = []
            lr_2 = []
            params_dict = dict(self.cls_net.named_parameters())
            for key, value in params_dict.items():
                if value.requires_grad:
                    if 'backbone' in key:
                        if self.configer.get('solver.lr.bb_lr_scale') == 0.0:
                            value.requires_grad = False
                        else:
                            lr_1.append(value)
                    else:
                        lr_2.append(value)

            params = [
                {'params': lr_1, 'lr': self.solver_dict['lr']['base_lr'] * self.configer.get('solver.lr.bb_lr_scale')},
                {'params': lr_2, 'lr': self.solver_dict['lr']['base_lr']}]
        else:
            no_decay_list = []
            decay_list = []
            no_decay_name = []
            decay_name = []
            for m in self.cls_net.modules():
                if (hasattr(m, 'groups') and m.groups > 1) or isinstance(m, torch.nn.BatchNorm2d) \
                        or m.__class__.__name__ == 'GL':
                    no_decay_list += m.parameters(recurse=False)
                    for name, p in m.named_parameters(recurse=False):
                        no_decay_name.append(m.__class__.__name__ + name)
                else:
                    for name, p in m.named_parameters(recurse=False):
                        if 'bias' in name:
                            no_decay_list.append(p)
                            no_decay_name.append(m.__class__.__name__ + name)
                        else:
                            decay_list.append(p)
                            decay_name.append(m.__class__.__name__ + name)
            Log.info('no decay list = {}'.format(no_decay_name))
            Log.info('decay list = {}'.format(decay_name))
            params = [{'params': no_decay_list, 'weight_decay': 0}, {'params': decay_list}]

        return params

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.cls_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1
        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, warm_list=(0, 1),
                           warm_lr_list=(self.solver_dict['lr']['base_lr']*self.configer.get('solver.lr.bb_lr_scale'),
                                         self.solver_dict['lr']['base_lr']),
                           solver_dict=self.solver_dict)
            self.data_time.update(time.time() - start_time)
            data_dict = RunnerHelper.to_device(self, data_dict)
            # Forward pass.
            out = self.cls_net(data_dict)
            loss_dict = self.loss(out)
            # Compute the loss of the train batch & backward.

            loss = loss_dict['loss']
            self.train_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0))
            self.optimizer.zero_grad()
            loss.backward()
            if self.configer.get('network', 'clip_grad', default=False):
                RunnerHelper.clip_grad(self.cls_net, 10.)

            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.solver_dict['display_iter'] == 0:
                Log.info('Train Epoch: {0}\tTrain Iteration: {1}\t'
                         'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                         'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                         'Learning rate = {4}\tLoss = {3}\n'.format(
                             self.runner_state['epoch'], self.runner_state['iters'],
                             self.solver_dict['display_iter'], self.train_losses.info(),
                             RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time,
                             data_time=self.data_time))

                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.solver_dict['lr']['metric'] == 'iters' and self.runner_state['iters'] == self.solver_dict['max_iters']:
                break

            if self.runner_state['iters'] % self.solver_dict['save_iters'] == 0 and self.configer.get('local_rank') == 0:
                RunnerHelper.save_net(self, self.cls_net)

            # Check to val the current model.
            if self.runner_state['iters'] % self.solver_dict['test_interval'] == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.cls_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                # Forward pass.
                data_dict = RunnerHelper.to_device(self, data_dict)
                out = self.cls_net(data_dict)
                loss_dict = self.loss(out)
                out_dict, label_dict, _ = RunnerHelper.gather(self, out)
                self.running_score.update(out_dict, label_dict)
                self.val_losses.update({key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self, self.cls_net)
            # Print the log info & reset the states.
            Log.info('Test Time {batch_time.sum:.3f}s'.format(batch_time=self.batch_time))
            Log.info('TestLoss = {}'.format(self.val_losses.info()))
            Log.info('Top1 ACC = {}'.format(RunnerHelper.dist_avg(self, self.running_score.get_top1_acc())))
            Log.info('Top3 ACC = {}'.format(RunnerHelper.dist_avg(self, self.running_score.get_top3_acc())))
            Log.info('Top5 ACC = {}'.format(RunnerHelper.dist_avg(self, self.running_score.get_top5_acc())))
            self.batch_time.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.running_score.reset()
            self.cls_net.train()