Ejemplo n.º 1
0
def schiffts():
    # some initialization
    old_data = {}
    data_queue = []
    current_data = None
    next_hit = {}
    last_update = ''

    intensity = 0
    temperature_data = {'status': 0}

    storage = DataStorage(settings.COLLECTOR_DATA_FILE)

    # get date
    now = datetime.now()
    latest_radar = now - timedelta(0, 10*60)     # radar has a 8minute-ish delay, so go 10minutes back in time
    timestamp = build_timestamp(latest_radar)

    if settings.DEBUG:
        print "current timestamp: %s"%timestamp

    old_rain, old_last_rain, old_last_dry, old_snow, old_data_queue, old_location_weather = storage.load_data()

    # get data from srf.ch up to now
    for minutes in range(0, settings.NO_SAMPLES+3):
        timestamp = build_timestamp(latest_radar - timedelta(0, 60*5*minutes))
        # try to retrieve a measurement for the timestamp from the old data queue
        old_measurement = next((item for item in old_data_queue if item.timestamp == timestamp), None)

        # get a new measurement from srf.ch if it wasn't found in the old data queue
        if not old_measurement:
            try:
                measurement = Measurement((settings.X_LOCATION, settings.Y_LOCATION), timestamp, 3, 105)
                measurement.analyze_image()
                data_queue.append(measurement)
                if settings.DEBUG:
                    print "add sample with timestamp %s"%timestamp

                if minutes == 0:
                    current_data = measurement
                    last_update = timestamp

            except Exception, e:
                print "fail in queuefiller: %s" % e

        # use old data
        else:
            if settings.DEBUG:
                print "%s already in queue"%timestamp

            if minutes == 0:
                current_data = old_measurement
                last_update = timestamp

            data_queue.append(old_measurement)


        if len(data_queue) == settings.NO_SAMPLES:
            break
Ejemplo n.º 2
0
Archivo: id9.py Proyecto: mlevant/trx
def readMotorDump(fnameOrFolder,asDataStorage=True,\
    default_fname="motor_position_after_data_collection.txt"):
    """ 
      Read waxecollect style motor dump
      if fnameOrFolder is a folder, default_fname is read
      if asDataStorage is False:
        return recArray with fields name,user,dial
      else: return dictory like object (each motor is a key)
  """
    if os.path.isfile(fnameOrFolder):
        fname = fnameOrFolder
    else:
        fname = os.path.join(fnameOrFolder, default_fname)
    data = np.genfromtxt(fname, names=True, dtype=("<U15", float, float))
    # remove interleaved headers
    idx_to_remove = data['name'] == 'name'
    data = data[~idx_to_remove]
    #  for i in range(data.shape[0]): data['name'][i] = data['name'][i].decode('ascii')
    if asDataStorage:
        motor_pos = collections.namedtuple('motor_pos', ['user', 'dial'])
        ret = dict()
        for imotor, motor in enumerate(data['name']):
            ret[motor] = motor_pos(dial=data['dial'][imotor],
                                   user=data['user'][imotor])
        data = DataStorage(ret)
    return data
Ejemplo n.º 3
0
def average(fileOrFolder,
            delays=slice(None),
            scale=1,
            norm=None,
            returnAll=False,
            plot=False,
            showTrend=False):
    data = DataStorage(fileOrFolder)
    if isinstance(delays, slice):
        idx = np.arange(data.delays.shape[0])[delays]
    elif isinstance(delays, (int, float)):
        idx = data.delays == float(delays)
    else:
        idx = data.delays < 0
    if idx.sum() == 0:
        print("No data with the current filter")
        return None
    i = data.data[idx]
    q = data.q
    if isinstance(norm, (tuple, list)):
        idx = (q > norm[0]) & (q < norm[1])
        norm = np.nanmean(i[:, idx], axis=1)
        i = i / norm[:, np.newaxis]
    if isinstance(norm, np.ndarray):
        i = i / norm[:, np.newaxis]
    title = "%s %s" % (fileOrFolder, str(delays))
    utils.plotdata(q, i * scale, showTrend=showTrend, plot=plot, title=title)
    if returnAll:
        return q, i.mean(axis=0) * scale, i
    else:
        return q, i.mean(axis=0) * scale
Ejemplo n.º 4
0
def readLogFile(fname,
                skip_first=0,
                last=None,
                converters=None,
                output="datastorage"):
    """ read generic log file efficiently
      lines starting with "#" will be skipped
      last line starting with # will be used to find the keys
      converters is used convert a certain field. (see np.genfromtxt)
      
      output is a string, if 'datastorage' or 'dict' data is converted
      else it is left as recarray
  """
    # makes 'output' case insentive
    if isinstance(output, str): output = output.lower()

    with open(fname, "r") as f:
        lines = f.readlines()
    lines = [line.strip() for line in lines]

    # find last line starting with "#"
    for iline, line in enumerate(lines):
        if line.lstrip()[0] != "#": break

    # extract names (numpy can do it but gets confused with "# dd#
    # as it does not like the space ...
    names = lines[iline - 1][1:].split()

    data = np.genfromtxt(fname,
                         skip_header=iline,
                         names=names,
                         dtype=None,
                         converters=converters,
                         excludelist=[])

    # skip firsts/lasts
    data = data[skip_first:last]

    # force previously found names, numpy changes file to file_
    names = [name.strip("_") for name in data.dtype.names]
    data.dtype.names = names

    # convert to string columns that can be
    dtype = data.dtype.descr
    newtype = []
    for (name, type_str) in dtype:
        name = name.strip("_")
        # numpy changes file to file_
        type_str = type_str.replace("|S", "<U")
        newtype.append((name, type_str))
    data = data.astype(newtype)

    if output.lower() == "dict":
        # convert to dict
        data = dict((name, data[name]) for name in data.dtype.names)
    elif output.lower() == "datastorage":
        data = dict((name, data[name]) for name in data.dtype.names)
        data = DataStorage(data)

    return data
Ejemplo n.º 5
0
 def load_available_storages(self):
     try:
         result = self.execute_request(str(self.api_url) + self.LOAD_AVAILABLE_STORAGES)
         if result is None:
             return []
         return [DataStorage.from_json(item) for item in result]
     except Exception as e:
         raise RuntimeError("Failed to load storages with READ and WRITE permissions. "
                            "Error message: {}".format(str(e.message)))
Ejemplo n.º 6
0
 def save(ds: datastorage.DataStorage, args):
     settings_str = ds.get_preferences()
     db_settings = json.loads(settings_str) if settings_str is not None else {}
     #print('db_settings', db_settings)
     #print('argzzz', args.get)
     font_size = args.get('font_size', None, type=int)
     if font_size:
         if not 5 <= font_size <= 32:
             raise AttributeError('Font size is out of range [5, 32]')
         db_settings['font_size'] = font_size
     theme = args.get('theme', None, type=str)
     if theme:
         if theme not in (Settings.THEME_LIGHT, Settings.THEME_DARK, Settings.THEME_SEPIA):
             raise AttributeError('Unknown theme: ' + theme)
         db_settings['theme'] = theme
     settings_str = json.dumps(db_settings)
     #print(settings_str)
     ds.set_preferences(settings_str)
Ejemplo n.º 7
0
 def load(ds: datastorage.DataStorage):
     settings_str = ds.get_preferences()
     db_settings = json.loads(settings_str) if settings_str is not None else {}
     def_settings = {
         'font_size': Settings.DEF_FONT_SIZE,
         'theme': Settings.DEF_THEME
     }
     overall_settings = {**def_settings, **db_settings}
     return overall_settings
Ejemplo n.º 8
0
def leastsq_circle(x, y):
    """ Utility funciton to fit a circle given x,y positions of points """
    # coordinates of the baricenter
    center_estimate = np.nanmean(x), np.nanmean(y)
    center, ier = optimize.leastsq(_chi2, center_estimate, args=(x, y))
    xc, yc = center
    Ri = _calc_R(x, y, *center)
    R = Ri.mean()
    residu = np.sum((Ri - R)**2)
    return DataStorage(center=np.asarray((xc, yc)), radius=R)
Ejemplo n.º 9
0
Archivo: id9.py Proyecto: mlevant/trx
def doFolder_dataRed(azavStorage,
                     funcForAveraging=np.nanmean,
                     outStorageFile='auto',
                     reference='min',
                     chi2_0_max='auto',
                     saveTxt=True,
                     first=None,
                     last=None):
    """ azavStorage if a DataStorage instance or the filename to read 
  """

    if isinstance(azavStorage, DataStorage):
        azav = azavStorage
        folder = azavStorage.folder
    elif os.path.isfile(azavStorage):
        folder = os.path.dirname(azavStorage)
        azav = DataStorage(azavStorage)
    else:
        # assume is just a folder name
        folder = azavStorage
        azavStorage = folder + "/pyfai_1d" + default_extension
        azav = DataStorage(azavStorage)

    if last is not None or first is not None:
        idx = slice(first, last)
        azav.log.delay = azav.log.delay[idx]
        azav.data_norm = azav.data_norm[idx]
        azav.err_norm = azav.err_norm[idx]

    # calculate differences
    tr = dataReduction.calcTimeResolvedSignal(
        azav.log.delay,
        azav.data_norm,
        err=azav.err_norm,
        q=azav.q,
        reference=reference,
        funcForAveraging=funcForAveraging,
        chi2_0_max=chi2_0_max)

    tr.folder = folder
    tr.twotheta_rad = azav.twotheta_rad
    tr.twotheta_deg = azav.twotheta_deg
    tr.info = azav.pyfai_info

    if outStorageFile == 'auto':
        if not os.path.isdir(folder): folder = "./"
        outStorageFile = folder + "/diffs" + default_extension
    tr.filename = outStorageFile

    # save txt and npz file
    if saveTxt: dataReduction.saveTxt(folder, tr, info=azav.pyfai_info)

    tr.save(outStorageFile)

    return tr
Ejemplo n.º 10
0
def find_center_using_clicks(img, X=None, Y=None, clim='auto'):
    """ Find beam center position fitting points (selected by clicks) on a ring

        Parameters
        ==========
        img: array or string
          image to use, if string, reads it with fabio

        X,Y: None or arrays
          position of center of pixels, if given they will have to have
          same shape as img, if None, they will be created with meshgrid

        clim: tuple|'auto'
          for color scale
    """

    # interpret inputs
    img = _prepare_img(img)

    if clim == 'auto':
        clim = np.nanpercentile(img.ravel(), (90, 100))
    shape = img.shape
    if X is None or Y is None:
        X, Y = np.meshgrid(range(shape[1]), range(shape[0]))
    ans = 'ok'
    while (ans != 'done'):
        ax = plt.gca()
        ax.pcolormesh(X, Y, img, cmap=plt.cm.gray, vmin=clim[0], vmax=clim[1])
        print("Select points on a ring, middle-click to stop")
        coords = plt.ginput(-1)
        coords = np.asarray(coords).T
        xc, yc, R = leastsq_circle(coords[0], coords[1])
        circle = plt.Circle((xc, yc),
                            radius=R,
                            lw=5,
                            color='green',
                            fill=False)
        ax.add_artist(circle)
        print("Found circle at (%.4f,%.4f), R = %.4f" % (xc, yc, R))
        ax.plot(xc, yc, "o", color="green", markersize=5)
        plt.draw()
        ans = input("type 'done' to finish, anything else to try again")
    return DataStorage(xc=xc, yc=yc, R=R)
Ejemplo n.º 11
0
def fit_ellipse(x, y):
    """ Utility funciton to fit an ellipse given x,y positions of points """
    # from http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html
    x = x[:, np.newaxis]
    y = y[:, np.newaxis]
    D = np.hstack((x * x, x * y, y * y, x, y, np.ones_like(x)))
    S = np.dot(D.T, D)
    C = np.zeros([6, 6])
    C[0, 2] = C[2, 0] = 2
    C[1, 1] = -1
    E, V = np.linalg.eig(np.dot(np.linalg.inv(S), C))
    n = np.argmax(np.abs(E))
    A = V[:, n]

    # center
    b, c, d, f, g, a = A[1] / 2, A[2], A[3] / 2, A[4] / 2, A[5], A[0]
    num = b * b - a * c
    x0 = (c * d - b * f) / num
    y0 = (a * f - b * d) / num
    center = np.array([x0, y0])

    # angle of rotation
    b, c, d, f, g, a = A[1] / 2, A[2], A[3] / 2, A[4] / 2, A[5], A[0]
    angle = np.rad2deg(0.5 * np.arctan(2 * b / (a - c)))

    # axis
    b, c, d, f, g, a = A[1] / 2, A[2], A[3] / 2, A[4] / 2, A[5], A[0]
    up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g)
    down1 = (b * b - a * c) * ((c - a) * np.sqrt(1 + 4 * b * b / ((a - c) *
                                                                  (a - c))) -
                               (c + a))
    down2 = (b * b - a * c) * ((a - c) * np.sqrt(1 + 4 * b * b / ((a - c) *
                                                                  (a - c))) -
                               (c + a))
    res1 = np.sqrt(up / down1)
    res2 = np.sqrt(up / down2)
    axis = np.array([res1, res2])
    return DataStorage(center=center,
                       axis=axis,
                       angle=angle,
                       radius=np.mean(axis))
Ejemplo n.º 12
0
 def calc_best_transmission(self,
                            E,
                            requested_tramission,
                            verbose=False,
                            use_progressive=False):
     """ E must be a float, can't be a vector """
     E = float(E)
     if use_progressive:
         t = self._calc_all_transmissions(E)
         best = np.argmin(np.abs(t - requested_tramission))
         best_combination = self._att[best]
     else:
         t = self._calc_all_transmissions_progressive(E)
         best = np.argmin(np.abs(t - requested_tramission))
         best_combination = self._att_progressive[best]
     t_1E = t[best]
     t_2E = self.calc_transmission(2 * E, best_combination)
     t_3E = self.calc_transmission(3 * E, best_combination)
     if verbose:
         print(
             f"Finding set for T={requested_tramission:.3g} @ {E:.3f} keV")
         print(f"best set is {best_combination}:")
         print(f"  {self._show_combination(best_combination)}")
         print(
             f"transmission @  E is {float(t[best]):.3g} (asked {requested_tramission:.3g})"
         )
         print(f"transmission @ 2E is {t_2E:.3g}")
         print(f"transmission @ 3E is {t_3E:.3g}")
     return DataStorage(
         bestset=best_combination,
         transmission=t_1E,
         energy=E,
         transmission_requested=requested_tramission,
         t1E=t_1E,
         t2E=t_2E,
         t3E=t_3E,
     )
Ejemplo n.º 13
0
Archivo: id9.py Proyecto: mlevant/trx
def readLogFile(fnameOrFolder,
                subtractDark=False,
                skip_first=0,
                asDataStorage=True,
                last=None,
                srcur_min=30):
    """ read id9 style logfile; 
        last before data will be used as keys ... 
        only srcur>srcur_min will be kept
        subtractDark is not needed for data collected with waxscollect
    """
    if os.path.isdir(fnameOrFolder):
        fname = findLogFile(fnameOrFolder)
    else:
        fname = fnameOrFolder
    log.info("Reading id9 logfile: %s" % fname)

    data = utils.files.readLogFile(fname,skip_first=skip_first,last=last,\
           output = "array",converters=dict(delay=_delayToNum))

    # work on darks if needed
    if subtractDark:
        ## find darks
        with open(fname, "r") as f:
            lines = f.readlines()
        lines = [line.strip() for line in lines]
        # look only for comment lines
        lines = [line for line in lines if line[0] == "#"]
        for line in lines:
            if line.find("pd1 dark/sec") >= 0: darks['pd1ic'] = _findDark(line)
            if line.find("pd2 dark/sec") >= 0: darks['pd2ic'] = _findDark(line)
            if line.find("pd3 dark/sec") >= 0: darks['pd3ic'] = _findDark(line)

        ## subtract darks
        for diode in ['pd1ic', 'pd2ic', 'pd3ic', 'pd4ic']:
            if diode in darks:
                data[diode] = data[diode] - darks[diode] * data['timeic']

    # srcur filter
    if "currentmA" in data.dtype.names:
        idx_cur = data['currentmA'] > srcur_min
        if (idx_cur.sum() < idx_cur.shape[0] * 0.5):
            log.warn("Minimum srcur filter has kept only %.1f%%" %
                     (idx_cur.sum() / idx_cur.shape[0] * 100))
            log.warn("Minimum srcur: %.2f, median(srcur): %.2f" %
                     (srcur_min, np.nanmedian(data["currentmA"])))
        data = data[idx_cur]
    else:
        log.warn("Could not find currentmA in logfile, skipping filtering")

    info = DataStorage()

    # usually folders are named sample/run
    if os.path.isdir(fnameOrFolder):
        folder = fnameOrFolder
    else:
        folder = os.path.dirname(fnameOrFolder)
    dirs = folder.split(os.path.sep)
    ylabel = ".".join(dirs[-2:])
    info.name = ".".join(dirs[-2:])

    try:
        reprate = readReprate(fname)
        info.reprate = reprate
        ylabel += " %.2f Hz" % reprate
    except:
        print("Could not read rep rate info")

    try:
        time_info = timesToInfo(data['time'])
        info.duration = time_info
        ylabel += "\n" + time_info
    except:
        print("Could not read time duration info")

    info.ylabel = ylabel

    if asDataStorage:
        data = DataStorage(
            dict((name, data[name]) for name in data.dtype.names))

    return data, info
Ejemplo n.º 14
0
def doFolder_dataRed(azavStorage,
                     funcForAveraging=np.nanmean,
                     outStorageFile='auto',
                     reference='min',
                     chi2_0_max='auto',
                     saveTxt=True,
                     first=None,
                     last=None,
                     idx=None,
                     split_angle=False):
    """ azavStorage if a DataStorage instance or the filename to read 
  """

    if isinstance(azavStorage, DataStorage):
        azav = azavStorage
        folder = azavStorage.folder
    elif os.path.isfile(azavStorage):
        folder = os.path.dirname(azavStorage)
        azav = DataStorage(azavStorage)
    else:
        # assume is just a folder name
        folder = azavStorage
        azavStorage = folder + "/pyfai_1d" + default_extension
        azav = DataStorage(azavStorage)

    if split_angle:
        angles = np.unique(azav.log.angle)
        diffs = []
        for angle in angles:
            idx = azav.log.angle == angle
            diffs.append(
                doFolder_dataRed(azav,
                                 funcForAveraging=funcForAveraging,
                                 outStorageFile=None,
                                 reference=reference,
                                 chi2_0_max=chi2_0_max,
                                 saveTxt=False,
                                 idx=idx,
                                 split_angle=False))
        ret = DataStorage(angles=angles, diffs=diffs)
        if outStorageFile == 'auto':
            if not os.path.isdir(folder): folder = "./"
            outStorageFile = folder + "/diffs" + default_extension
        if outStorageFile is not None:
            ret.save(outStorageFile)
        return ret

    azav = copy.deepcopy(azav)

    if last is not None or first is not None and idx is None:
        idx = slice(first, last)

    if idx is not None:
        azav.log.delay = azav.log.delay[idx]
        azav.data_norm = azav.data_norm[idx]
        azav.err_norm = azav.err_norm[idx]

    # laser off is saved as -10s, if using the automatic "min"
    # preventing from using the off images
    # use reference=-10 if this is what you want
    if reference == "min":
        reference = azav.log.delay[azav.log.delay != -10].min()

    # calculate differences
    tr = dataReduction.calcTimeResolvedSignal(
        azav.log.delay,
        azav.data_norm,
        err=azav.err_norm,
        q=azav.q,
        reference=reference,
        funcForAveraging=funcForAveraging,
        chi2_0_max=chi2_0_max)

    tr.folder = folder
    tr.twotheta_rad = azav.twotheta_rad
    tr.twotheta_deg = azav.twotheta_deg
    tr.info = azav.pyfai_info

    if outStorageFile == 'auto':
        if not os.path.isdir(folder): folder = "./"
        outStorageFile = folder + "/diffs" + default_extension
    tr.filename = outStorageFile

    # save txt and npz file
    if saveTxt: dataReduction.saveTxt(folder, tr, info=azav.pyfai_info)

    if outStorageFile is not None:
        tr.save(outStorageFile)

    return tr
Ejemplo n.º 15
0
def doFolder(folder="./",
             files='*.edf*',
             nQ=1500,
             force=False,
             mask=None,
             dark=10,
             qlims=None,
             monitor='auto',
             save_pyfai=False,
             saveChi=True,
             poni='pyfai.poni',
             storageFile='auto',
             save=True,
             logDict=None,
             dezinger=None,
             skip_first=0,
             last=None,
             azimuth_range=None):
    """ calculate 1D curves from files in folder

      Parameters
      ----------
      folder : str
          folder to work on
      files : str
          regular expression to look for ccd images (use edf* for including
          gzipped giles)
      nQ : int
          number of Q-points (equispaced)
      monitor : array or (qmin,qmax) or None
          normalization array (or list for q range normalization)
      force : True|False
          if True, redo from beginning even if previous data are found
          if False, do only new files
      mask : can be a list of [filenames|array of booleans|mask string]
          pixels that are True are dis-regarded
      saveChi : True|False
          if False, chi files (text based for each image) are not saved
      dezinger : None or 0<float<100
          use pyfai function 'separate' to remove zingers. The value is the 
          percentile used to find the liquicd baseline, 50 (i.e. median value)
          if a good approximation. Dezinger takes ~200ms per 4M pixel image.
          Needs good center and mask
      logDict : None or dictionary(-like)
          each key is a field. if given it has to have 'file' key
      poni : informationation necessary to build an AzimuthalIntegrator:
          → an AzimuthalIntegrator instance
          → a filename that will be look for in
               1 'folder' first
               2 in ../folder
               3 in ../../folder
               ....
               n-1 in pwd
               n   in homefolder
          → a dictionary (use to bootstrap an AzimuthalIntegrator using 
              AzimuthalIntegrator(**poni)
      save_pyfai : True|False
          if True, it stores all pyfai's internal arrays (~110 MB)
      skip_first : int
          skip the first images (the first one is sometime not ideal)
      last : int
          skip evey image after 'last'
 """

    func = inspect.currentframe()
    args = inspect.getargvalues(func)
    files_reg = files
    # store argument for saving ..
    args = dict([(arg, args.locals[arg]) for arg in args.args])

    folder = folder.replace("//", "/").rstrip("/")

    # can't store aritrary objects
    if isinstance(args['poni'], pyFAI.azimuthalIntegrator.AzimuthalIntegrator):
        args['poni'] = ai_as_dict(args['poni'])

    if storageFile == 'auto':
        fname = "pyfai_1d" + g_default_extension
        if not os.path.isdir(folder):
            # do not overide folder, it might be useful
            storageFile = os.path.join(".", fname)
        else:
            storageFile = os.path.join(folder, fname)

    if os.path.isfile(storageFile) and not force:
        saved = DataStorage(storageFile)
        log.info("Found %d images in storage file" % saved.data.shape[0])
        ai = getAI(poni, folder)
        # consistency check (saved images done with same parameters ?)
        if ai is not None:
            # pyfai cannot be compared (except for its string representation)
            # because before first image some fields are None
            keys_to_compare = "nQ mask dark dezinger skip_first last"
            keys_to_compare = keys_to_compare.split()
            # recursively transform in plain dict and limit comparison to given keys
            saved_args = DataStorage(saved.args).toDict()
            now_args = DataStorage(args).toDict()
            saved_args = dict([(k, saved_args[k]) for k in keys_to_compare])
            now_args = dict([(k, now_args[k]) for k in keys_to_compare])

            if (not compare_pyfai(saved.pyfai,ai)) or  \
                np.any( saved.mask != interpretMasks(mask,saved.mask.shape))  or \
                not utils.is_same(saved_args,now_args) :
                log.warn(
                    "Found inconsistency between curves already saved and new ones"
                )
                log.warn("Redoing saved ones with new parameters")
                if (saved.pyfai_info != ai_as_str(ai)):
                    log.warn("pyfai parameters changed from:\n%s" %
                             saved.pyfai_info + "\nto:\n%s" % ai_as_str(ai))
                if np.any(
                        saved.mask != interpretMasks(mask, saved.mask.shape)):
                    log.warn("Mask changed from:\n%s" % saved.mask +
                             "\nto:\n%s" %
                             interpretMasks(mask, saved.mask.shape))
                if not utils.is_same(saved_args, now_args):
                    for k in set(now_args.keys()) - set(['mask']):
                        if not utils.is_same(saved_args[k], now_args[k]):
                            if isinstance(saved_args[k], dict):
                                for kk in saved_args[k].keys():
                                    if not utils.is_same(
                                            saved_args[k][kk],
                                            now_args[k][kk]):
                                        log.warn(
                                            "Parameter %s.%s" % (k, kk) +
                                            "IS DIFFERENT", saved_args[k][kk],
                                            now_args[k][kk])
                            else:
                                log_str = " %s to %s" % (saved_args[k],
                                                         now_args[k])
                                if len(log_str) > 20:
                                    log_str = ":\n%s\nto:\n%s" % (
                                        saved_args[k], now_args[k])
                                log.warn("Parameter '%s' changed from" % k +
                                         log_str)
                args['force'] = True
                saved = doFolder(**args)
    else:
        saved = None

    files = utils.getFiles(folder, files)
    if logDict is not None:
        files = [f for f in files if utils.getBasename(f) in logDict['file']]

        # sometime one deletes images but not corresponding lines in logfiles...
        if len(files) < len(logDict['file']):
            basenames = np.asarray([utils.getBasename(file) for file in files])
            idx_to_keep = np.asarray([f in basenames for f in logDict['file']])
            for key in logDict.keys():
                logDict[key] = logDict[key][idx_to_keep]
            log.warn(
                "More files in log than actual images, truncating loginfo")

    files = files[skip_first:last]

    if saved is not None:
        files = [
            f for f in files if utils.getBasename(f) not in saved["files"]
        ]
    log.info("Will do azimuthal integration for %d files" % (len(files)))

    files = np.asarray(files)
    basenames = np.asarray([utils.getBasename(file) for file in files])

    if len(files) > 0:
        # which poni file to use:
        ai = getAI(poni, folder)
        _msg = "could not interpret poni info or find poni file"
        if ai is None: raise ValueError(_msg)

        shape = read(files[0]).shape
        mask = interpretMasks(mask, shape)

        data = np.empty((len(files), nQ))
        err = np.empty((len(files), nQ))
        pbar = utils.progressBar(len(files))
        for ifname, fname in enumerate(files):
            img = read(fname)
            q, i, e = do1d(ai,
                           img,
                           mask=mask,
                           npt_radial=nQ,
                           dark=dark,
                           dezinger=dezinger,
                           azimuth_range=azimuth_range)
            data[ifname] = i
            err[ifname] = e
            if saveChi:
                chi_fname = utils.removeExt(fname) + ".chi"
                utils.saveTxt(chi_fname,
                              q,
                              np.vstack((i, e)),
                              info=ai_as_str(ai),
                              overwrite=True)
            pbar.update(ifname + 1)
        pbar.finish()
        if saved is not None:
            files = np.concatenate((saved.orig.files, basenames))
            data = np.concatenate((saved.orig.data, data))
            err = np.concatenate((saved.orig.err, err))
        else:
            files = basenames
        twotheta_rad = utils.qToTwoTheta(q, wavelength=ai.wavelength * 1e10)
        twotheta_deg = utils.qToTwoTheta(q,
                                         wavelength=ai.wavelength * 1e10,
                                         asDeg=True)
        orig = dict(data=data.copy(),
                    err=err.copy(),
                    q=q.copy(),
                    twotheta_deg=twotheta_deg,
                    twotheta_rad=twotheta_rad,
                    files=files)
        ret = dict(folder=folder,
                   files=files,
                   orig=orig,
                   pyfai=ai_as_dict(ai),
                   pyfai_info=ai_as_str(ai),
                   mask=mask,
                   args=args)
        if not save_pyfai:
            ret['pyfai']['chia'] = None
            ret['pyfai']['dssa'] = None
            ret['pyfai']['qa'] = None
            ret['pyfai']['ttha'] = None

        ret = DataStorage(ret)

    else:
        ret = saved

    if ret is None: return None

    if qlims is not None:
        idx = (ret.orig.q >= qlims[0]) & (ret.orig.q <= qlims[1])
    else:
        idx = np.ones_like(ret.orig.q, dtype=bool)

    ret.orig.twotheta_deg = utils.qToTwoTheta(ret.orig.q,
                                              wavelength=ai.wavelength * 1e10,
                                              asDeg=True)
    ret.orig.twotheta_rad = utils.qToTwoTheta(ret.orig.q,
                                              wavelength=ai.wavelength * 1e10)

    ret.data = ret.orig.data[:, idx]
    ret.err = ret.orig.err[:, idx]
    ret.q = ret.orig.q[idx]

    ret.twotheta_rad = ret.orig.twotheta_rad[idx]
    ret.twotheta_deg = ret.orig.twotheta_deg[idx]

    if isinstance(monitor, str):
        if monitor == 'auto':
            monitor = ret.data.mean(1)
        else:
            raise ValueError(
                "'monitor' must be ndarray, 2-D tuple/list, 'auto' or None.")
    elif isinstance(monitor, (tuple, list)):
        if len(monitor) == 2:
            idx_norm = (ret.q >= monitor[0]) & (ret.q <= monitor[1])
            monitor = ret.data[:, idx_norm].mean(1)
        else:
            raise ValueError(
                "'monitor' must be ndarray, 2-D tuple/list, 'auto' or None.")
    elif not isinstance(monitor, np.ndarray) and monitor is not None:
        raise ValueError(
            "'monitor' must be ndarray, 2-D tuple/list, 'auto' or None.")

    if monitor is not None:
        ret["data_norm"] = ret.data / monitor[:, np.newaxis]
        ret["err_norm"] = ret.err / monitor[:, np.newaxis]
        ret["monitor"] = monitor[:, np.newaxis]
    else:
        ret["data_norm"] = None
        ret["err_norm"] = None
        ret["monitor"] = None

    # add info from logDict if provided
    if logDict is not None: ret['log'] = logDict
    # sometime saving is not necessary (if one has to do it after subtracting background
    if storageFile is not None and save: ret.save(storageFile)

    return ret
Ejemplo n.º 16
0
 def create_db(self):
     path = self.get_db_path()
     ds = DataStorage(path)
     ds.create_db()
     return ds, path
Ejemplo n.º 17
0
    def __init__(self):
        """Prepare UnisonHandler to manage unison instances.

        Parameters
        ----------
        none

        Returns
        -------
        null

        Throws
        -------
        none

        Doctests
        -------

        """
        self.import_config()
        # Set up configuration

        # Register exit handler
        atexit.register(self.exit_handler)

        # Set up logging
        self.logger = logging.getLogger('unisonctrl')
        self.logger.setLevel(logging.INFO)

        # Set up main log file logging
        logFileFormatter = logging.Formatter(
            fmt='[%(asctime)-s] %(levelname)-9s : %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S %p')

        # Size based log rotation
        if (self.config['rotate_logs'] == "size"):
            logfileHandler = logging.handlers.RotatingFileHandler(
                self.config['unisonctrl_log_dir'] + os.sep + 'unisonctrl.log',
                # maxBytes=50000000,  # 50mb
                maxBytes=5000,  # 50mb
                backupCount=20)

        # Timed log rotation
        elif (self.config['rotate_logs'] == "time"):
            logfileHandler = logging.handlers.TimedRotatingFileHandler(
                self.config['unisonctrl_log_dir'] + os.sep + 'unisonctrl.log',
                when="midnight",
                backupCount=14,  # Keep past 14 days
            )

        # No log rotation
        elif (self.config['rotate_logs'] == "off"):
            logfileHandler = logging.FileHandler()

        else:
            logfileHandler = logging.FileHandler()

        logfileHandler.setLevel(logging.DEBUG)
        logfileHandler.setFormatter(logFileFormatter)
        self.logger.addHandler(logfileHandler)

        # Send logs to console when running
        consoleFormatter = logging.Formatter(
            '[%(asctime)-22s] %(levelname)s : %(message)s')
        consoleHandler = logging.StreamHandler()
        consoleHandler.setLevel(logging.INFO)
        consoleHandler.setFormatter(consoleFormatter)
        self.logger.addHandler(consoleHandler)

        # Disabling debugging on the storage layer, it's no longer needed
        self.data_storage = DataStorage(False, self.config)

        self.logger.info("UnisonCTRL Starting")

        # Clean up dead processes to ensure data files are in an expected state
        self.cleanup_dead_processes()
Ejemplo n.º 18
0
class UnisonHandler():
    """Starts, stops and monitors unison instances."""

    # Object for data storage backend
    data_storage = None

    # configuration values
    config = {}

    # Enables extra output
    INFO = True

    # Logging Object
    # logging

    # self.config['unisonctrl_log_dir'] + os.sep + "unisonctrl.log"
    # self.config['unisonctrl_log_dir'] + os.sep + "unisonctrl.error"

    def __init__(self):
        """Prepare UnisonHandler to manage unison instances.

        Parameters
        ----------
        none

        Returns
        -------
        null

        Throws
        -------
        none

        Doctests
        -------

        """
        self.import_config()
        # Set up configuration

        # Register exit handler
        atexit.register(self.exit_handler)

        # Set up logging
        self.logger = logging.getLogger('unisonctrl')
        self.logger.setLevel(logging.INFO)

        # Set up main log file logging
        logFileFormatter = logging.Formatter(
            fmt='[%(asctime)-s] %(levelname)-9s : %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S %p')

        # Size based log rotation
        if (self.config['rotate_logs'] == "size"):
            logfileHandler = logging.handlers.RotatingFileHandler(
                self.config['unisonctrl_log_dir'] + os.sep + 'unisonctrl.log',
                # maxBytes=50000000,  # 50mb
                maxBytes=5000,  # 50mb
                backupCount=20)

        # Timed log rotation
        elif (self.config['rotate_logs'] == "time"):
            logfileHandler = logging.handlers.TimedRotatingFileHandler(
                self.config['unisonctrl_log_dir'] + os.sep + 'unisonctrl.log',
                when="midnight",
                backupCount=14,  # Keep past 14 days
            )

        # No log rotation
        elif (self.config['rotate_logs'] == "off"):
            logfileHandler = logging.FileHandler()

        else:
            logfileHandler = logging.FileHandler()

        logfileHandler.setLevel(logging.DEBUG)
        logfileHandler.setFormatter(logFileFormatter)
        self.logger.addHandler(logfileHandler)

        # Send logs to console when running
        consoleFormatter = logging.Formatter(
            '[%(asctime)-22s] %(levelname)s : %(message)s')
        consoleHandler = logging.StreamHandler()
        consoleHandler.setLevel(logging.INFO)
        consoleHandler.setFormatter(consoleFormatter)
        self.logger.addHandler(consoleHandler)

        # Disabling debugging on the storage layer, it's no longer needed
        self.data_storage = DataStorage(False, self.config)

        self.logger.info("UnisonCTRL Starting")

        # Clean up dead processes to ensure data files are in an expected state
        self.cleanup_dead_processes()

    def run(self):
        """General wrapper to ensure running instances are up to date.

        Parameters
        ----------
        none

        Returns
        -------
        list
            PIDs of dead unison instances which we thought were running.

        Throws
        -------
        none

        """
        self.create_all_sync_instances()

    def create_all_sync_instances(self):
        """Create multiple sync instances from the config and filesystem info.

        Parameters
        ----------
        none

        Returns
        -------
        list
            PIDs of dead unison instances which we thought were running.

        Throws
        -------
        none

        """
        # Get directories to sync
        dirs_to_sync_by_sync_instance = self.get_dirs_to_sync(
            self.config['sync_hierarchy_rules'])

        # Store all known running sync instances here to potentially kill later
        # unhandled_sync_instances = copy.deepcopy(dirs_to_sync_by_sync_instance)
        unhandled_sync_instances = copy.deepcopy(
            self.data_storage.running_data)

        # Loop through each entry in the dict and create a sync instance for it
        for instance_name, dirs_to_sync in dirs_to_sync_by_sync_instance.items(
        ):

            # Mark this instance as handled so it's not killed later
            unhandled_sync_instances.pop(instance_name, None)

            # Make new sync instance
            self.create_sync_instance(instance_name, dirs_to_sync)

        # Kill any instances in unhandled_sync_instances, because they are
        # no longer required needed

        for inst_to_kill in unhandled_sync_instances:
            self.logger.debug("Cleaning up instance '" + inst_to_kill + "'" +
                              " which is no longer needed.")
            self.kill_sync_instance_by_pid(
                self.data_storage.running_data[inst_to_kill]['pid'])

    def get_dirs_to_sync(self, sync_hierarchy_rules):
        """Start a new sync instance with provided details.

        # Parses the filesystem, and lists l

        Parameters
        ----------
        Pass through sync_hierarchy_rules from config

        Returns
        -------
        dict (nested)
            [syncname] - name of the sync name for this batch
                ['sync'] - directories to sync in this instance
                ['ignore'] - directories to ignore in this instance

        Throws
        -------
        none

        """
        # Contains the list of directories which have been handled by the loop
        # so future iterations don't duplicate work
        handled_dirs = []

        # Contains list which is built up within the loop and returned at the
        # end of the method
        all_dirs_to_sync = {}

        self.logger.debug("Processing directories to sync. " +
                          str(len(sync_hierarchy_rules)) +
                          " rules to process.")

        for sync_instance in sync_hierarchy_rules:

            self.logger.debug("Instance '" + sync_instance['syncname'] + "' " +
                              "Parsing rules and directories.")

            # Find full list
            expr = (self.config['unison_local_root'] + os.sep +
                    sync_instance['dir_selector'])

            # Get full list of glob directories
            all_dirs_from_glob = glob.glob(self.sanatize_path(expr))

            # Remove any dirs already handled in a previous loop, unless
            # overlap is set
            if ('overlap' not in sync_instance
                    or sync_instance['overlap'] is False):

                self.logger.debug("Instance '" + sync_instance['syncname'] +
                                  "' " +
                                  "Removing already handled directories.")

                before = len(all_dirs_from_glob)
                all_unhandled_dirs_from_glob = [
                    x for x in all_dirs_from_glob if x not in handled_dirs
                ]
                after = len(all_unhandled_dirs_from_glob)

                # Log event if the duplication handler remove directories
                # Added 'False and' to disable this section. TMI in the logs
                if (before != after):
                    self.logger.debug("Instance '" +
                                      sync_instance['syncname'] + "' " +
                                      "Parse result: " + str(before) +
                                      " dirs down to " + str(after) +
                                      " dirs by removing already handled dirs")

            # By default, use 'name_highfirst'
            if 'sort_method' not in sync_instance:
                sync_instance['sort_method'] = 'name_highfirst'

            # Apply sort
            if sync_instance['sort_method'] == 'name_highfirst':
                sorted_dirs = sorted(all_unhandled_dirs_from_glob,
                                     reverse=True)
            elif sync_instance['sort_method'] == 'name_lowfirst':
                sorted_dirs = sorted(all_unhandled_dirs_from_glob)
            # Add other sort implementations here later, if wanted
            else:

                # Message for exception and self.logger
                msg = ("'" + sync_instance['sort_method'] + "'" +
                       " is not a valid sort method on sync instance " + "'" +
                       sync_instance['syncname'] + "'. " +
                       "Instance will not be created.")

                # Send message to self.logger
                self.logger.warn(msg)

                # Uncomment this to raise an exception instead of returning blank
                # raise ValueError(msg)

                # Return blank dir set, since sort was invalid
                return {}

            # Apply sort_count, if it's set
            if 'sort_count' in sync_instance:

                if (not isinstance(sync_instance['sort_count'], int)):
                    # if not int, throw warning
                    self.logger.warning(
                        "Instance '" + sync_instance['syncname'] + "' " +
                        "sort_count '" + str(sync_instance['sort_count']) +
                        "'" +
                        " is not castable to int. Setting sort_count to a " +
                        "default of '3'.")

                    # Then set a default
                    sync_instance['sort_count'] = 3

                else:
                    # If it's a valid int, use it
                    self.logger.debug("Instance '" +
                                      sync_instance['syncname'] + "' " +
                                      "sort_count set at " +
                                      str(sync_instance['sort_count']) + ".")

                dirs_to_sync = list(
                    itertools.islice(sorted_dirs, 0,
                                     sync_instance['sort_count'], 1))

            else:
                # if sort_count is not set, sync all dirs
                dirs_to_sync = sorted_dirs

            # Add all these directories to the handled_dirs so they aren't
            # duplicated later
            handled_dirs += dirs_to_sync

            # add dirs to final output nested dict
            if len(dirs_to_sync) > 0:
                all_dirs_to_sync[sync_instance['syncname']] = dirs_to_sync

            self.logger.debug("Instance '" + sync_instance['syncname'] + "' " +
                              "Syncing " + str(len(dirs_to_sync)) +
                              " directories.")

            # Shouldn't need this, except when in deep debugging
            # If you need it, turn it on
            if (False):
                dirstr = "\n   ".join(dirs_to_sync)
                print(sync_instance['syncname'] + " directories :\n   " +
                      dirstr + "\n\n")

        self.logger.debug("Sync rule parsing complete. " + "Syncing " +
                          str(len(handled_dirs)) + " explicit directories " +
                          "in all instances combined")

        # Shouldn't need this, except when in deep debugging
        # If you need it, turn it on
        if (False):
            print("All directories synced :\n   " + "\n   ".join(handled_dirs))

        return all_dirs_to_sync

    def create_sync_instance(self, instance_name, dirs_to_sync):
        """Start a new sync instance with provided details, if not already there.

        Parameters
        ----------
        dict
            List of directories to sync with each instance. The key of the dict
            becomes the name of the sync instance. The value of the dict
            becomes the list of directories to sync with that instance.

        Returns
        -------
        bool
            True if new instance was created
            False if no new instance was needed

        Throws
        -------
        none

        """
        # TODO: check global config hash here too, not just instance-specific config
        self.logger.debug("Processing instance '" + instance_name +
                          "' , deciding whether" + "to kill or not")

        # Obtain a hash of the requested config to be able to later check if
        # the instance should be killed and restarted or not.
        # This hash will be stored with the instance data, and if it changes,
        # the instance will be killed and restarted so that new config can be
        # applied.
        config_hash = hashlib.sha256((

            # Include the instance name in the config hash
            str(instance_name) +

            # Include the directories to sync in the config hash
            str(dirs_to_sync) +

            # Include the global config in the config hash
            str(self.config['global_unison_config_options']
                )).encode('utf-8')).hexdigest()

        # Get data from requested instance, if there is any
        requested_instance = self.data_storage.get_data(instance_name)

        if requested_instance is None:

            # No instance data found, must start new one
            self.logger.info(
                "Instance '" + instance_name + "' " +
                "No instance data found, starting new sync instance.")

        elif requested_instance['config_hash'] == config_hash:
            # Existing instance data found, still uses same config - no restart
            self.logger.debug("Instance '" + instance_name + "' " +
                              "Instance data found, config still unchanged.")
            return False
        else:
            # Existing instance data found, but uses different config, so restarting
            self.logger.info(
                "Instance '" + instance_name + "' " +
                "Instance data found, but config or directories to sync have" +
                " changed. Restarting instance.")

            self.kill_sync_instance_by_pid(requested_instance['pid'])
            self.data_storage.remove_data(requested_instance['syncname'])

        # Process dirs into a format for unison command line arguments
        dirs_for_unison = []
        trimmed_dirs = []
        amount_to_clip = (len(self.config['unison_local_root']) + 1)

        for dir in dirs_to_sync:

            # Clip off directory from local root
            dir_trimmed = dir[amount_to_clip:]

            # Format for unison command line args
            pathstr = "-path=" + dir_trimmed + ""

            # Append to list for args
            dirs_for_unison.append(pathstr)

            # Append to list for config storage
            trimmed_dirs.append(dir_trimmed)

        # Basic verification check (by no means complete)

        # Ensure local root exists
        if not os.path.isdir(self.config['unison_local_root']):
            raise IOError("Local root directory does not exist")

        # Convert SSH config info into connection string
        remote_path_connection_string = (
            "" + "ssh://" + str(self.config['unison_remote_ssh_conn']) + "/" +
            str(self.config['unison_remote_root']) + "")

        # todo: add '-label' here

        # print(remote_path_connection_string)

        # Check if SSH config key is specified
        if self.config['unison_remote_ssh_keyfile'] == "":
            # Key is not specified, don't use it
            # TODO: reformat this entry
            self.logger.debug("SSH key not specified")

        else:
            # Key is specified
            # TODO: reformat this entry
            self.logger.debug("Key specified: " +
                              self.config['unison_remote_ssh_keyfile'])

            remote_path_connection_string = (
                remote_path_connection_string + " -sshargs='-i " +
                self.config['unison_remote_ssh_keyfile'] + "'")

        # print(remote_path_connection_string)

        # Set env vars to pass to unison
        envvars = {
            'UNISONLOCALHOSTNAME': self.config['unison_local_hostname'],
            'HOME': self.config['unison_home_dir'],
            'USER': self.config['unison_user'],
            'LOGNAME': self.config['unison_user'],
            'PWD': self.config['unison_home_dir'],
        }

        logfile = self.config[
            'unison_log_dir'] + os.sep + instance_name + ".log"
        self.touch(logfile)

        # Start unison
        cmd = ([self.config['unison_path']] +
               ["" + str(self.config['unison_local_root']) + ""] +
               [remote_path_connection_string] +
               ["-label=unisonctrl-" + instance_name] + dirs_for_unison +
               self.config['global_unison_config_options'] + ["-log=true"] +
               ["-logfile=" + logfile])

        # self.logger.info(" ".join(cmd))

        running_instance_pid = subprocess.Popen(
            cmd,
            stdin=subprocess.DEVNULL,
            stdout=subprocess.DEVNULL,
            stderr=subprocess.DEVNULL,  # close_fds=True,
            env=envvars).pid

        instance_info = {
            "pid": running_instance_pid,
            "syncname": instance_name,
            "config_hash": config_hash,
            "dirs_to_sync": trimmed_dirs
        }

        self.logger.info("New instance '" + instance_name + "' " + " (PID " +
                         str(instance_info['pid']) + ").")

        # Store instance info
        self.data_storage.set_data(instance_name, instance_info)

        # New instance was created, return true
        return True

    def touch(self, fname, mode=0o644, dir_fd=None, **kwargs):
        """Python equuivilent for unix "touch".

        Paramaters
        -------
        str
            filename to touch

        Throws
        -------
        none

        Returns
        -------
        none

        Throws
        -------
        none

        Doctests
        -------

        """
        flags = os.O_CREAT | os.O_APPEND
        with os.fdopen(os.open(fname, flags=flags, mode=mode,
                               dir_fd=dir_fd)) as f:
            os.utime(f.fileno() if os.utime in os.supports_fd else fname,
                     dir_fd=None if os.supports_fd else dir_fd,
                     **kwargs)
            with open(fname, 'a'):
                os.utime(fname, None)

    def kill_sync_instance_by_pid(self, pid):
        """Kill unison instance by it's PID.

        Includes built-in protection for accidentally killing a non-unison
        program, and even other unison programs not started with this script.
        This ensures that this function will never kill a PID that we have not
        started with unisonctrl.

        Paramaters
        -------
        int
            pid to kill - must be a PID started in this process

        Throws
        -------
        none

        Returns
        -------
        none

        Throws
        -------
        none

        Doctests
        -------

        """
        # Get the list of known pids to ensure we only kill one of those
        running_data = self.data_storage.running_data

        self.logger.debug("Attempting to kill PID '" + str(pid) + "'")

        known_pids = []

        # Gets PIDs of all the known unison processes
        known_pids = [int(running_data[d]['pid']) for d in running_data]

        # TODO: Rewrite this function, it can probably be done with reduce()
        # RESOLUTION: Rewritten above, this kept in case it doesn't work
        # for entry in running_data:
        #    running_data[entry]
        #    known_pids.append(int(running_data[entry]['pid']))

        # TODO: Finish this error checking logic here, currently it doesn't check the PID

        # Try and kill with sigint (same as ctrl+c), if we are allowed to

        # First make sure the process exists
        if not psutil.pid_exists(pid):
            self.logger.info("PID " + str(pid) +
                             " was not found. Perhaps already dead?")
            return

        # Then make sure it's a process we started
        elif pid not in known_pids:

            shortmsg = ("PID #" + str(pid) +
                        " is not managed by UnisonCTRL. " +
                        "Refusing to kill.  See logs for more information.")

            longmsg = (
                "PID #" + str(pid) + " is not managed by UnisonCTRL. " +
                "Refusing to kill. Your data files are likely corrupted. " +
                "Kill all running unison instances on this system, " +
                "delete everything in '" + self.config['running_data_dir'] +
                "/*', and run UnisonCTRL again.")

            self.logger.critical(longmsg)

            raise RuntimeError(shortmsg)

        # Finally, kill the process if it exists and we started it
        else:
            return self.kill_pid(pid)

    def kill_pid(self, pid):
        """Kill a process by it's PID.

        Starts with SIGINT (ctrl + c), then waits 6 seconds, checking
        every 1/3 second. If it doesn't die after another 6 seconds, it is
        attempted to be killed with psutil.terminate, then psutil.kill.

        Parameters
        ----------
        int
            PID of a process to kill

        Returns
        -------
        None

        Throws
        -------
        none

        """
        # Ensure it still exists before continuing
        if not psutil.pid_exists(pid):
            return

        # If it did not die nicely, get stronger about killing it
        p = psutil.Process(pid)

        # Try terminating, wait 3 seconds to see if it dies
        p.terminate()  # SIGTERM
        psutil.wait_procs([p], timeout=3)

        # Ensure it still exists before continuing
        if not psutil.pid_exists(pid):
            self.logger.debug("PID " + str(pid) +
                              " was killed with SIGTERM successfully.")
            return

        # Try hard killing, wait 3 seconds to see if it dies
        p.kill()  # SIGKILL
        psutil.wait_procs([p], timeout=3)

        self.logger.info("PID " + str(pid) +
                         " could not be killed with SIGTERM, and " +
                         "was killed with SIGKILL.")

        return

    def cleanup_dead_processes(self):
        """Ensure all expected processes are still running.

        Checks the running_data list against the current PID list to ensure
        all expected processes are still running. Note that if everything works
        as expected and does not crash, there should never be dead instances.

        As such, if dead instances appear on a regular basis, consider digging
        into *why* they are appearing.

        Parameters
        ----------
        none

        Returns
        -------
        list
            PIDs of dead unison instances which we thought were running.

        Throws
        -------
        none

        """
        # Get the list of processes we know are running and we think are running
        # Also, convert each PID to int to make sure we can compare
        actually_running_processes = self.get_running_unison_processes()
        l = self.data_storage.running_data
        supposedly_running_processes = [int(l[d]['pid']) for d in l]

        # Find which instances we think are running but aren't
        dead_instances = [
            x for x in supposedly_running_processes
            if x not in actually_running_processes
        ]

        # Note: if nothing crashes, dead instances should never exist.
        if (len(dead_instances) > 0):
            self.logger.warn("Found " + str(len(dead_instances)) +
                             " unexpected dead " +
                             "instances. Cleaning up data files now.")
        else:
            self.logger.debug("Found " + str(len(dead_instances)) +
                              " unexpected dead " + "instances to clean up.")

        # Remove data on dead instances
        for instance_id in dead_instances:
            process = self.get_process_info_by_pid(instance_id)

            self.logger.debug("Removing data on '" + str(process['syncname']) +
                              "' " + "because it is not running as expected.")

            self.data_storage.remove_data(process['syncname'])

    def get_process_info_by_pid(self, pid):
        """Return the syncname of a process given it's PID.

        Parameters
        ----------
        int
            PID of desired process


        Returns
        -------
        dict
            the full details of the sync process specified by the PID

        Throws
        -------
        none

        """
        # TODO: discuss if self.logger needs to happen here? I think not? -BY

        for process in self.data_storage.running_data:
            if self.data_storage.running_data[process]['pid'] == pid:
                return self.data_storage.running_data[process]

    def get_running_unison_processes(self):
        """Return PIDs of currently running unison instances.

        Parameters
        ----------
        none


        Returns
        -------
        list[int]
            PIDs of unison instances, empty list

        Throws
        -------
        none

        """
        # Get PIDs
        # Note: throws exception if no instances exist
        try:
            pids = str(subprocess.check_output(["pidof", '/usr/bin/unison']))

            # Parse command output into list by removing junk chars and exploding
            # string with space delimiter
            pids = pids[2:-3].split(' ')

        except subprocess.CalledProcessError:
            # If error caught here, no unison instances are found running
            pids = []

        self.logger.debug("Found " + str(len(pids)) +
                          " running instances on this system: PIDs " +
                          ", ".join(pids))

        # Return, after converting to ints
        return list(map(int, pids))

    def import_config(self):
        """Import config from config, and apply details where needed.

        Parameters
        ----------
        none

        Returns
        -------
        True
            if success

        Throws
        -------
            'LookupError' if config is invalid.

        """
        # Get the config file
        import config

        # Get all keys from keyvalue pairs in the config file
        settingsFromConfigFile = [
            x for x in dir(config) if not x.startswith('__')
        ]

        # Convert config file into dict
        for key in settingsFromConfigFile:
            value = getattr(config, key)
            self.config[key] = value

        # Settings validation: specify keys which are valid settings
        # If there are rows in the config file which are not listed here, an
        # error will be raised
        validSettings = {
            'data_dir',
            'running_data_dir',
            'unison_log_dir',
            'unisonctrl_log_dir',
            'log_file',
            'make_root_directories_if_not_found',
            'sync_hierarchy_rules',
            'unison_local_root',
            'unison_remote_root',
            'unison_path',
            'global_unison_config_options',
            'unison_remote_ssh_conn',
            'unison_remote_ssh_keyfile',
            'unison_local_hostname',
            'unison_home_dir',
            'unison_user',
            'webhooks',
            'rotate_logs',
        }

        # If a setting contains a directory path, add it's key here and it will
        # be sanatized (whitespace and trailing whitespaces stripped)
        settingPathsToSanitize = {
            'data_dir',
            'unison_home_dir',
            'running_data_dir',
            'unison_log_dir',
            'unisonctrl_log_dir',
        }

        # Values here are used as config values unless overridden in the
        # config.py file
        defaultSettings = {
            'data_dir': '/tmp/unisonctrl',
            'log_file': '/dev/null',
            'make_root_directories_if_not_found': True,
            'unison_path': '/usr/bin/unison',  # Default ubuntu path for unison
            'unison_remote_ssh_keyfile': "",
            'unison_local_hostname': platform.node(),
            'running_data_dir': self.config['data_dir'] + os.sep +
            "running-sync-instance-information",
            'unison_log_dir': self.config['data_dir'] + os.sep + "unison-logs",
            'unisonctrl_log_dir':
            self.config['data_dir'] + os.sep + "unisonctrl-logs",
            'unison_user': getpass.getuser(),
            'rotate_logs': "time",
        }

        # TODO: Implement allowedSettings, which force settings to be
        # in a given list of options

        # Apply default settings to fill gaps between explicitly set ones
        for key in defaultSettings:
            if (key not in self.config):
                self.config[key] = defaultSettings[key]

        # Ensure all required keys are specified
        for key in validSettings:
            if (key not in self.config):
                raise LookupError("Required config entry '" + key +
                                  "' not specified")

        # Ensure no additional keys are specified
        for key in self.config:
            if (key not in validSettings):
                raise LookupError("Unknown config entry: '" + key + "'")

        # Sanatize directory paths
        for key in settingPathsToSanitize:
            self.config[key] = self.sanatize_path(self.config[key])

        # If you reach here, configuration was read and imported without error

        return True

    def sanatize_path(self, path):
        """Sanitize directory paths by removing whitespace and trailing slashes.

        Currently only tested on Unix, but should also work on Windows.
        TODO: Test on windows to ensure it works properly.

        Parameters
        ----------
        1) str
            directory path to sanatize

        Returns
        -------
        str
            sanatized directory path

        Throws
        -------
        none

        Doctests
        -------
        >>> US = UnisonHandler(False)

        >>> US.sanatize_path(" /extra/whitespace ")
        '/extra/whitespace'

        >>> US.sanatize_path("/dir/with/trailing/slash/")
        '/dir/with/trailing/slash'

        >>> US.sanatize_path("  /dir/with/trailing/slash/and/whitepace/   ")
        '/dir/with/trailing/slash/and/whitepace'

        >>> US.sanatize_path("  /dir/with/many/trailing/slashes////   ")
        '/dir/with/many/trailing/slashes'

        """
        # Remove extra whitespace
        path = path.strip()

        # Remove slash from end of path
        path = path.rstrip(os.sep)

        return path

    def exit_handler(self):
        """Is called on exit automatically.

        Paramaters
        -------
        none

        Throws
        -------
        none

        Returns
        -------
        none

        Throws
        -------
        none

        Doctests
        -------

        """
        self.logger.debug("Starting script shutdown in the class " +
                          self.__class__.__name__)

        # Clean up dead processes before exiting
        self.cleanup_dead_processes()
        """
        print("FAKELOG: [" + time.strftime("%c") + "] [UnisonCTRL] Exiting\n")
        """
        self.logger.debug("Script shutdown complete in class " +
                          self.__class__.__name__)

        self.logger.info("Exiting UnisonCTRL")
Ejemplo n.º 19
0
from io import StringIO
import csv
import re
import logging
import json
import datetime

from ktokenizer import KTokenizer, tokenize
from compositedict import CompositeDictionary
from datastorage import DataStorage
from settings import Settings
from googledict import GoogleDictionary

app = Flask(__name__)

datastorage = DataStorage("../_kreader_files/kreader.db")
datastorage.create_db()

ktokenizer = None
composite_dict = CompositeDictionary(True)
google_dict = GoogleDictionary()

Textdesc = namedtuple('Textdesc', ['id', 'title', 'total_words', 'unique_words'])
Worddesc = namedtuple('Worddesc', ['id', 'word', 'definitions', 'added_min_ago', 'title',
                                   'left_context', 'context_word', 'right_context'])

@app.teardown_request
def remove_session(ex=None):
    datastorage.remove_session()

@app.route("/")
Ejemplo n.º 20
0
    DailyPrices = DatabaseDailyPrices(base)
    DailyPrices.new()
    DailyPrices.tickers = [(1, 'BNP', '.PA')
                           ]  #,(2,'GSZ','.PA'),(3,'EDF','.PA')]
    DailyPrices.get_prices()
    DailyPrices.update_prices()

    Trivial = queue.Queue()

    DataManager1 = SQLDataManagerBacktest(Trivial, DailyPrices, tickers,
                                          datetime(2014, 1, 1),
                                          datetime(2014, 2, 20))
    DataManager1.market()

    DataStorage1 = DataStorage(tickers)

    Strategy1 = BuyandHoldStrategy(DataManager1, DataStorage1, Trivial)
    #    Strategy1 = MovingAverageStrategy(DataManager1,DataStorage1,Trivial,5,10)

    while True:
        if DataManager1.continue_backtest == True:
            DataManager1.next_bar()
        else:
            break

        while True:
            try:
                event = Trivial.get(False)
            except:
                break
Ejemplo n.º 21
0
def averageScanPoints(scan,data,errAbs=None,isRef=None,lpower=None,
    useRatio=False,funcForAveraging=np.nanmean,chi2_0_max='auto'):
  """ Average data for equivalent values in 'scan' array

      given scanpoints in 'scan' and corresponding data in 'data'
      average all data corresponding the exactly the same scanpoint.
      If the values in scan are coming from a readback, rounding might be
      necessary.

      Parameters
      ----------
      scan : array(N)
          array of scan points
      data : array(N,M)
          array of data to average, first axis correspond to scan index
      errAbs : None or array as data
          errbar for each data point. if None take the standard deviation 
          over images in given scan point
      isRef : None or array(N)
          if None no reference is subtracted. if array, True indicate that 
          a particular image is a reference one
      lpower : None or array(N)
          if not None, time resolved difference or ratio is normalized by it
      useRatio : bool
          use True if you want to calculate ratio ( I_{on}/I_{ref} ) instead
          of I_{on} - I_{off}
      funcForAveraging: function accepting axis=int keyword argument
          is usually np.nanmean or np.nanmedian.
      chi2_0_max = None, "auto" or float
          simple chi2_0 threshold filter. use trx.filters for more advanced
          ones. If auto, define max as 95% percentle. if None it is not applied

      Returns
      -------
      DataStorage instance with all info
"""
  args = dict( isRef = isRef, lpower = lpower, useRatio = useRatio )
  data = data.astype(np.float)
  average = np.mean(data,axis=0)
  median  = np.median(data,axis=0)

  if isRef is None: isRef = np.zeros( data.shape[0], dtype=bool )
  isRef = np.asarray(isRef).astype(bool)
  assert data.shape[0] == isRef.shape[0], \
    "Size mismatch, data is %d, isRef %d"%(data.shape[0],isRef.shape[0])

  # subtract reference only is there is at least one
  if isRef.sum()>0:
    # create a copy (subtractReferences works in place)
    diff_all = subtractReferences(data.copy(),np.argwhere(isRef),
               useRatio=useRatio)
    ref_average = funcForAveraging(data[isRef],axis=0)
  else:
    diff_all = data
    ref_average = np.zeros_like(average)

  # normalize signal for laser intensity if provided
  if lpower is not None:
    lpower = utils.reshapeToBroadcast(lpower,data)
    if useRatio is False:
      diff_all /= lpower
    else:
      diff_all = (diff_all-1)/lpower+1

  scan_pos = np.unique(scan)
  shape_out = [len(scan_pos),] + list(diff_all.shape[1:])
  diffs     = np.empty(shape_out)
  diff_err  = np.empty(shape_out)
  diffs_in_scan = []
  chi2_0 = []
  for i,t in enumerate(scan_pos):
    shot_idx = (scan == t) # & ~isRef
    if shot_idx.sum() == 0:
      log.warn("No data to average for scan point %s"%str(t))

    # select data for the scan point
    diff_for_scan = diff_all[shot_idx]
    if errAbs is not None:
      noise  = np.nanmean(errAbs[shot_idx],axis = 0)
    else:
      noise = np.nanstd(diff_for_scan, axis = 0)

    # if it is the reference take only every second ...
    if np.all( shot_idx == isRef ):
      diff_for_scan = diff_for_scan[::2]

    diffs_in_scan.append( diff_for_scan )

    # calculate average
    diffs[i] = funcForAveraging(diff_for_scan,axis=0)

    # calculate chi2 of different repetitions
    chi2 = np.power( (diff_for_scan - diffs[i])/noise,2)
    # sum over all axis but first
    for _ in range(diff_for_scan.ndim-1):
      chi2 = np.nansum( chi2, axis=-1 )

    # store chi2_0
    chi2_0.append( chi2/diffs[i].size )

    # store error of mean
    diff_err[i] = noise/np.sqrt(shot_idx.sum())
  ret = dict(scan=scan_pos,diffs=diffs,err=diff_err,
        chi2_0=chi2_0,diffs_in_scan=diffs_in_scan,
        ref_average = ref_average, diffs_plus_ref=diffs+ref_average,
        average=average,median=median,args=args)
  ret = DataStorage(ret)
  if chi2_0_max is not None:
    ret = filters.chi2Filter(ret,threshold=chi2_0_max)
    ret = filters.applyFilters(ret)
  return ret
Ejemplo n.º 22
0
def find_center_liquid_peak(img,
                            X=None,
                            Y=None,
                            mask=None,
                            percentile=(90, 99),
                            plot=False):
    """ Find beam center position fitting a ring (usually liquid peak)

        Parameters
        ==========
        img: array or string
          image to use, if string, reads it with fabio

        X,Y: None or arrays
          position of center of pixels, if given they will have to have
          same shape as img, if None, they will be created with meshgrid

        mask: boolean mask or something trx.mask.interpretMasks can understand
          True are pixels to mask out

        percentile: tuple
          range of intensity to use (in percentile values)
    """

    # interpret inputs
    img = _prepare_img(img)
    mask = _prepare_mask(mask, img)

    if mask is not None and not isinstance(mask, np.ndarray):
        mask = interpretMasks(mask, img.shape)
    if mask is not None:
        img[mask] = np.nan
    zmin, zmax = np.nanpercentile(img.ravel(), percentile[:2])
    shape = img.shape
    idx = (img >= zmin) & (img <= zmax)
    if X is None or Y is None:
        _use_imshow = True
        X, Y = np.meshgrid(range(shape[1]), range(shape[0]))
    else:
        _use_imshow = False
    xfit = X[idx].ravel()
    yfit = Y[idx].ravel()
    fit = leastsq_circle(xfit, yfit)
    xc = fit.center[0]
    yc = fit.center[1]
    R = fit.radius
    if plot:
        ax = plt.gca()
        cmin = np.nanmin(img)
        if _use_imshow:
            plt.imshow(img, clim=(cmin, zmin), cmap=plt.cm.gray)
            # RGBA
            img = np.zeros((img.shape[0], img.shape[1], 4))
            img[idx, 0] = 1
            img[idx, 3] = 1
            plt.imshow(img)
        else:
            plt.pcolormesh(X, Y, img, cmap=plt.cm.gray, vmin=cmin, vmax=zmin)
            img = np.ma.masked_array(img, idx)
            plt.pcolormesh(X, Y, img)
        circle = plt.Circle((xc, yc),
                            radius=R,
                            lw=5,
                            color='green',
                            fill=False)
        ax.add_artist(circle)
        plt.plot(xc, yc, "o", color="green", markersize=5)
    return DataStorage(xc=xc, yc=yc, R=R, x=xfit, y=yfit)
Ejemplo n.º 23
0
                stats = get_min_max_avg(relevant_files)
                print_stats_table(stats)

elif len(sys.argv) > 1 and sys.argv[1] == "ranges":
    print_ranges()

elif len(sys.argv) > 1 and sys.argv[1] == "dbm":
    print("Converting sky/z1 files to dbm")
    convert_to_dbm()

elif len(sys.argv) > 1 and sys.argv[1] == "id":
    print(equalize_node_ids(sys.argv[2],sys.argv[3]))

elif len(sys.argv) > 1 and sys.argv[1] == "lineplots":
    arguments = parse_arguments()
    storage = DataStorage()

                                              # an ordered dict {"channel":[([txpowers],[values])]}

    for platform in platforms:
        arguments["platform"] = platform

        rel_chans = ["12","18","25","26"]

        for channel in range(11,27):
            arguments["channel"] = str(channel)

            for txpower in txpowers[arguments["platform"]]:                                                 #connecting a list of txpowers
                arguments["txpower"] = str(txpower)
                print(arguments["platform"],arguments["channel"],arguments["txpower"])
Ejemplo n.º 24
0
    u'\u03B3': 'gamma',
    u'\u03B4': 'delta',
    u'\u03B5': 'epsilon',
    u'\u03B6': 'zeta',
    u'\u03B7': 'eta',
    u'\u03B8': 'theta',
    u'\u03B9': 'iota',
    u'\u03BA': 'kappa',
    u'\u03BB': 'lamda',
    u'\u03BC': 'mu',
    u'\u03BD': 'nu',
    u'\u03BE': 'xi',
    u'\u03BF': 'omicron',
    u'\u03C0': 'pi',
    u'\u03C1': 'rho',
    u'\u03C3': 'sigma',
    u'\u03C4': 'tau',
    u'\u03C5': 'upsilon',
    u'\u03C6': 'phi',
    u'\u03C7': 'chi',
    u'\u03C8': 'psi',
    u'\u03C9': 'omega',
}

# invert key,value
alphabet = dict((name, uni) for (uni, name) in _greek_unicode_to_name.items())

# convienent ...
if _has_datastorage:
    alphabet = DataStorage(alphabet)
Ejemplo n.º 25
0
def find_center_using_rings(img,
                            sigma=3,
                            high_threshold=20,
                            low_threshold=10,
                            mask=None,
                            center=None,
                            nrings=10,
                            min_dist=100,
                            max_peak_width=60,
                            use_ellipse=False,
                            plot=True,
                            clim="auto",
                            verbose=False,
                            reprocess=False):
    """ Find beam center position finding powder rings and fitting them

        This functions tries to automatically find the power peaks.
        It uses several steps:
        1. finds pixels belonging to a sharp peak by using skimage.canny
        2. given an initial guess of the center, it build a distance
           histogram
        3. finds peaks in histogram that should represent the edges of
           of a powder ring
        4. fit pixels belowning to each peak (i.e. pixels within a ring)
           to a circle/ellipse
        5. does some sanity check before each fit (minimum number of
           pixels, width of the peak, etc) and after (center cannot move
           too much
        6. uses previously find centers (median value) to build distance
           histogram of pixels found by the canny filter

        Parameters
        ==========

        img: array or string
          image to use, if string, reads it with fabio

        sigma: float
          used by canny filter, see skimage.feature.canny doc

        {low|high}_threshold: float
          used by canny filter, see skimage.feature.canny. In general
          low=10, high=20 seems to work very well for wear and strong intensity
          images

        mask: boolean mask or something trx.mask.interpretMasks can understand
          True are pixels to mask out

        center: None or tuple
          if tuple, use it as first guess of center (has to be good to few
          tens of pixels)
          if None, it proposes a "click" method

        nrings: int
          number of rings to look for, can be high, if less peaks are found it
          will not bug out

        min_dist: float
          mimum distance to look for peaks, to avoid possible high intensity
          close to beam or beamstop

        max_peak_width: float
          do not even try to fit peaks that are broader than max_peak_width

        use_ellipse: bool
          if True fits with ellipse, else uses circle

        plot: bool
          if True plots rings, histograms and 2d integration (quite useful)

        clim: "auto" or tuple
          color scale to use for plots, if auto uses 20%,85% percentile

        verbose: bool
          increases verbosity (possibly too much !)

        reprocess: bool
          if True, at the end of the fits of all rings, it reruns with current
          best estimate (median of centers) to find other peaks that could not
          be intentified with initial guess
    """

    # interpret inputs
    img = _prepare_img(img)
    mask = _prepare_mask(mask, img)

    if isinstance(clim, str) and clim == "auto":
        if mask is None:
            clim = np.percentile(img, (10, 95))
        else:
            clim = np.percentile(img[~mask], (10, 95))

    if center is None:
        plt.figure("Pick center")
        plt.imshow(img, clim=clim)
        print("Click approximate center")
        center = plt.ginput(1)[0]

    # use skimage canny filter
    # note: mask is "inverted" to be consistent with trx convention: True
    # are masked out

    edges = feature.canny(img,
                          sigma,
                          low_threshold=low_threshold,
                          high_threshold=high_threshold,
                          mask=~mask)
    points = np.array(np.nonzero(edges)).T

    if points.shape[0] == 0:
        raise ValueError(
            "Could not find any points, try changing the threshold or\
                the initial center")
    else:
        print("Found %d points" % points.shape[0])

    # swap x,y
    points = points[:, ::-1]

    image = np.zeros_like(img)
    if plot:
        plt.figure("fit ring")
        plt.imshow(img, clim=clim, cmap=plt.cm.gray_r)
    colors = plt.rcParams['axes.prop_cycle']
    storage_fit = []
    last_n_peaks = 0
    for i, color in zip(range(nrings), colors):

        ## find points in a given circle based on histogam of distances ...

        # dist is calculate here because we can use previous cycle to
        # have improve peaks/beackground separation
        dist = np.linalg.norm(points - center, axis=1).ravel()

        if plot:
            plt.figure("hist")
            plt.hist(dist,
                     1000,
                     histtype='step',
                     label="ring %d" % (i + 1),
                     **color)

        ## next is how to find the regions of the historam that should
        # represent peaks ...

        # we can start by some smoothing

        dist_hist, bins = np.histogram(dist,
                                       bins=np.arange(min_dist, dist.max()))
        bins_center = (bins[1:] + bins[:-1]) / 2
        N = sigma * 2
        # use triangular kernel
        kernel = np.concatenate(
            (np.arange(int(N / 2)), N / 2 - np.arange(int(N / 2) + 1)))
        # normalize it
        kernel = kernel / (N**2) / 4
        dist_hist_smooth = np.convolve(dist_hist, kernel, mode='same')

        if plot:
            temp = dist_hist_smooth / dist_hist_smooth.max() * dist_hist.max()
            plt.plot(bins_center, temp, '--', **color)

        peaks_ranges = find_hist_ranges(dist_hist_smooth,
                                        x=bins_center,
                                        max_frac=0.1)
        n_peaks = peaks_ranges.shape[0]

        if verbose:
            peaks_ranges_str = map(str, peaks_ranges)
            peaks_ranges_str = ",".join(peaks_ranges_str)
            print("Iteration %d, found %d peaks, ranges %s" %
                  (i, n_peaks, peaks_ranges_str))

        if i >= n_peaks:
            print("asked for peaks than found, stopping")
            break

        idx = (dist > peaks_ranges[i, 0]) & (dist < peaks_ranges[i, 1])
        #        log.debug("dist_range",dist_range,idx.sum(),idx.shape)

        # sanity check

        if points[idx].shape[0] == 0:
            print("No point for circle", i)
            continue

        if points[idx].shape[0] < 20:
            print("Too few points to try fit, skipping to next circle")
            continue

        peak_width = peaks_ranges[i][1] - peaks_ranges[i][0]
        if peak_width > max_peak_width:
            print("Peak %d seems too large (%.0f pixels), skipping" %
                  (i, peak_width))
            continue
        else:
            if verbose:
                print("Peak %d width %.0f pixels" % (i, peak_width))

        ## Do fit
        try:
            if use_ellipse:
                fit = fit_ellipse(points[idx, 0], points[idx, 1])
            else:
                fit = leastsq_circle(points[idx, 0], points[idx, 1])
        except (TypeError, np.linalg.LinAlgError):
            print("Fit failed for peak", i)
            continue

        # prevent outlayers to messup next circle
        is_ok = (n_peaks >= last_n_peaks-2) & \
                (np.linalg.norm(fit.center-center) < 50)

        if not is_ok:
            continue

        center = fit.center  #model_robust.params[0],model_robust.params[1]
        last_n_peaks = n_peaks
        storage_fit.append(fit)

        ## prepare out
        if use_ellipse:
            out_string = "ring %s" % (i + 1)
            out_string += " center: %.3f %.3f" % tuple(fit.center)
            out_string += " axis : %.3f %.3f" % tuple(fit.axis)
            out_string += " angle : %+.1f" % fit.angle
        else:
            out_string = "ring %s" % (i + 1)
            out_string += " center: %.3f %.3f" % tuple(fit.center)
            out_string += " radius : %.3f" % fit.radius
        print(out_string)

        if plot:
            plt.figure("fit ring")
            #plt.imshow(image)
            plt.plot(points[idx, 0],
                     points[idx, 1],
                     'b.',
                     markersize=1,
                     **color)
            plt.plot(center[0], center[1], ".", markersize=20, **color)
            circle = plt.Circle(fit.center,
                                radius=fit.radius,
                                fill=False,
                                **color)
            ax = plt.gca()
            ax.add_patch(circle)
            plt.pause(0.01)

    # package output
    out = DataStorage()
    for key in storage_fit[0].keys():
        out[key] = np.asarray([f[key] for f in storage_fit])
        out["%s_median" % key] = np.median(out[key], axis=0)
        out["%s_rms" % key] = np.std(out[key], axis=0)

    if plot:
        ai = azav.getAI(xcen=out["center_median"][0],
                        ycen=out["center_median"][1],
                        pixel=1e-3,
                        distance=0.2)
        plt.figure("2D integration")
        x, y, i2d = azav.do2d(ai, img, mask=mask, unit="r_mm")
        vmin, vmax = np.percentile(i2d, (20, 90))
        plt.pcolormesh(x, y, i2d, vmin=vmin, vmax=vmax)

    if reprocess:
        plt.close("all")
        return find_center_using_rings(img,
                                       sigma=sigma,
                                       high_threshold=high_threshold,
                                       low_threshold=low_threshold,
                                       mask=mask,
                                       plot=plot,
                                       center=out["center_median"],
                                       nrings=nrings,
                                       clim=clim,
                                       min_dist=min_dist,
                                       use_ellipse=use_ellipse,
                                       verbose=verbose,
                                       reprocess=False)

    return out