Ejemplo n.º 1
0
 def _compute_columns(self):
     if isinstance(self._engine, LlvmEvaluationEngine):
         fnptr = self._mapnode.get_result()
         rowindex = self._engine.rowindex
         if rowindex:
             nrows = rowindex.nrows
         else:
             nrows = self.dt.nrows
         return core.columns_from_mixed(self._elems, self.dt.internal,
                                        nrows, fnptr)
     else:
         ee = self._engine
         _dt = ee.dt.internal
         _ri = ee.rowindex
         ncols = len(self._elems)
         if ee.groupby:
             opfirst = reduce_opcodes["first"]
             n_reduce_cols = 0
             for elem in self._elems:
                 if isinstance(elem, int):
                     is_groupby_col = elem in ee.groupby_cols
                     n_reduce_cols += is_groupby_col
                 else:
                     n_reduce_cols += elem.is_reduce_expr(ee)
             expand_dataset = (n_reduce_cols < ncols)
             columns = ee.groupby_cols + self._elems
             self._names = ([ee.dt.names[i]
                             for i in ee.groupby_cols] + self._names)
             for i, elem in enumerate(columns):
                 if isinstance(elem, int):
                     col = core.expr_column(_dt, elem, _ri)
                     if not expand_dataset:
                         col = core.expr_reduceop(opfirst, col, ee.groupby)
                 else:
                     col = elem.evaluate_eager(ee)
                     if expand_dataset and elem.is_reduce_expr(ee):
                         col = col.ungroup(ee.groupby)
                 columns[i] = col
         else:
             columns = [
                 core.expr_column(_dt, e, _ri)
                 if isinstance(e, int) else e.evaluate_eager(ee)
                 for e in self._elems
             ]
         return core.columns_from_columns(columns)
Ejemplo n.º 2
0
 def _compute_columns(self):
     if isinstance(self._engine, LlvmEvaluationEngine):
         fnptr = self._mapnode.get_result()
         rowindex = self._engine.rowindex
         if rowindex:
             nrows = rowindex.nrows
         else:
             nrows = self.dt.nrows
         return core.columns_from_mixed(self._elems, self.dt.internal,
                                        nrows, fnptr)
     else:
         ee = self._engine
         _dt = ee.dt.internal
         _ri = ee.rowindex
         columns = [
             core.expr_column(_dt, e, _ri)
             if isinstance(e, int) else e.evaluate_eager(ee)
             for e in self._elems
         ]
         return core.columns_from_columns(columns)
Ejemplo n.º 3
0
 def evaluate_eager(self, ee):
     self.resolve()
     dt = self._dtexpr.get_datatable()
     ri = self._dtexpr.get_rowindex()
     return core.expr_column(dt.internal, self._colid, ri)