Ejemplo n.º 1
0
 def mirrorTree(self, root: TreeNode) -> TreeNode:
     #递归交换左右节点
     if not root: return root
     root.left, root.right = root.right, root.left
     if root.left: self.mirrorTree(root.left)
     if root.right: self.mirrorTree(root.right)
     return root
def buildTree_recur(preorder: List[int], inorder: List[int]) -> TreeNode:
    if (len(preorder) <= 0): return None
    #先序中的第一个元素是根节点
    rootVal = preorder[0]
    idx = inorder.index(rootVal)
    # 构建左右子树
    root = TreeNode(rootVal)
    root.left = buildTree_recur(preorder[1:idx + 1], inorder[0:idx])  #0省略
    root.right = buildTree_recur(preorder[idx + 1:len(preorder)],
                                 inorder[idx + 1:len(inorder)])  #len省略
    return root
def sortedListToBST(head: ListNode) -> TreeNode:
    if head is None: return None
    if head.next is None: return TreeNode(head.val)

    fast = slow = prev = head
    while fast and fast.next:
        prev = slow
        slow = slow.next
        fast = fast.next.next

    # 根据中间节点一分为二
    prev.next = None
    head2 = slow.next

    node = TreeNode(slow.val)
    node.left = sortedListToBST(head)
    node.right = sortedListToBST(head2)
    return node
    def build(preorder_left, preorder_right, inorder_left,
              inorder_right) -> TreeNode:
        if (preorder_left > preorder_right): return None

        # 前序遍历中的第一个节点就是根节点
        preorder_root = preorder_left
        # 在中序遍历中定位根节点
        inorder_root = index[preorder[preorder_root]]

        # 先把根节点建立出来
        root = TreeNode(preorder[preorder_root])
        # 得到左子树中的节点数目
        size_left_subtree = inorder_root - inorder_left
        # 递归地构造左子树,并连接到根节点
        # 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root.left = build(preorder_left + 1, preorder_left + size_left_subtree,
                          inorder_left, inorder_root - 1)
        # 递归地构造右子树,并连接到根节点
        # 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root.right = build(preorder_left + size_left_subtree + 1,
                           preorder_right, inorder_root + 1, inorder_right)
        return root