Ejemplo n.º 1
0
    def _load_recognition_items(self):
        items = {}

        with open(self._path, encoding='utf-8') as f:
            for line in f:
                line = line.strip()
                objects = line.split(', ')
                if len(objects) == 2:
                    image = objects[0]
                    captions = []
                    for caption in objects[1:]:
                        if caption[0] != '\"' or caption[-1] != '\"':
                            log.warning("Line %s: unexpected number "
                                "of quotes" % line)
                        else:
                            captions.append(caption.replace('\\', '')[1:-1])
                else:
                    image = objects[0][:-1]
                    captions = []

                item_id = osp.splitext(image)[0]
                image_path = osp.join(osp.dirname(self._path),
                    IcdarPath.IMAGES_DIR, image)
                if item_id not in items:
                    items[item_id] = DatasetItem(item_id, subset=self._subset,
                        image=image_path)

                annotations = items[item_id].annotations
                for caption in captions:
                    annotations.append(Caption(caption))

        return items
Ejemplo n.º 2
0
 def transform_item(self, item):
     annotations = item.annotations
     anns = [p for p in annotations if 'text' in p.attributes]
     for ann in anns:
         annotations.append(Caption(ann.attributes['text']))
         annotations.remove(ann)
     return item.wrap(annotations=annotations)
Ejemplo n.º 3
0
    def test_can_import_captions(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='word_1',
                        subset='train',
                        image=np.ones((10, 15, 3)),
                        annotations=[
                            Caption('PROPER'),
                        ]),
            DatasetItem(id='word_2',
                        subset='train',
                        image=np.ones((10, 15, 3)),
                        annotations=[
                            Caption("Canon"),
                        ]),
        ])

        dataset = Dataset.import_from(
            osp.join(DUMMY_DATASET_DIR, 'word_recognition'),
            'icdar_word_recognition')

        compare_datasets(self, expected_dataset, dataset)
Ejemplo n.º 4
0
    def test_can_save_and_load_captions_with_quotes(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='1',
                        image=np.ones((5, 5, 3)),
                        annotations=[Caption('caption\"')])
        ])

        with TestDir() as test_dir:
            self._test_save_and_load(
                expected_dataset,
                partial(IcdarWordRecognitionConverter.convert,
                        save_images=True), test_dir, 'icdar_word_recognition')
Ejemplo n.º 5
0
    def test_can_save_and_load_captions(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='a/b/1',
                        subset='train',
                        image=np.ones((10, 15, 3)),
                        annotations=[
                            Caption('caption 0'),
                        ]),
            DatasetItem(id=2,
                        subset='train',
                        image=np.ones((10, 15, 3)),
                        annotations=[
                            Caption('caption_1'),
                        ]),
        ])

        with TestDir() as test_dir:
            self._test_save_and_load(
                expected_dataset,
                partial(IcdarWordRecognitionConverter.convert,
                        save_images=True), test_dir, 'icdar_word_recognition')
Ejemplo n.º 6
0
    def _load_annotations(item):
        parsed = item['annotations']
        loaded = []

        for ann in parsed:
            ann_id = ann.get('id')
            ann_type = AnnotationType[ann['type']]
            attributes = ann.get('attributes')
            group = ann.get('group')

            label_id = ann.get('label_id')
            z_order = ann.get('z_order')
            points = ann.get('points')

            if ann_type == AnnotationType.label:
                loaded.append(
                    Label(label=label_id,
                          id=ann_id,
                          attributes=attributes,
                          group=group))

            elif ann_type == AnnotationType.mask:
                rle = ann['rle']
                rle['counts'] = rle['counts'].encode('ascii')
                loaded.append(
                    RleMask(rle=rle,
                            label=label_id,
                            id=ann_id,
                            attributes=attributes,
                            group=group,
                            z_order=z_order))

            elif ann_type == AnnotationType.polyline:
                loaded.append(
                    PolyLine(points,
                             label=label_id,
                             id=ann_id,
                             attributes=attributes,
                             group=group,
                             z_order=z_order))

            elif ann_type == AnnotationType.polygon:
                loaded.append(
                    Polygon(points,
                            label=label_id,
                            id=ann_id,
                            attributes=attributes,
                            group=group,
                            z_order=z_order))

            elif ann_type == AnnotationType.bbox:
                x, y, w, h = ann['bbox']
                loaded.append(
                    Bbox(x,
                         y,
                         w,
                         h,
                         label=label_id,
                         id=ann_id,
                         attributes=attributes,
                         group=group,
                         z_order=z_order))

            elif ann_type == AnnotationType.points:
                loaded.append(
                    Points(points,
                           label=label_id,
                           id=ann_id,
                           attributes=attributes,
                           group=group,
                           z_order=z_order))

            elif ann_type == AnnotationType.caption:
                caption = ann.get('caption')
                loaded.append(
                    Caption(caption,
                            id=ann_id,
                            attributes=attributes,
                            group=group))

            elif ann_type == AnnotationType.cuboid_3d:
                loaded.append(
                    Cuboid3d(ann.get('position'),
                             ann.get('rotation'),
                             ann.get('scale'),
                             label=label_id,
                             id=ann_id,
                             attributes=attributes,
                             group=group))

            else:
                raise NotImplementedError()

        return loaded
Ejemplo n.º 7
0
    def _load_annotations(self, ann, image_info=None, parsed_annotations=None):
        if parsed_annotations is None:
            parsed_annotations = []

        ann_id = ann['id']

        attributes = ann.get('attributes', {})
        if 'score' in ann:
            attributes['score'] = ann['score']

        group = ann_id  # make sure all tasks' annotations are merged

        if self._task is CocoTask.instances or \
                self._task is CocoTask.person_keypoints or \
                self._task is CocoTask.stuff:
            label_id = self._get_label_id(ann)

            attributes['is_crowd'] = bool(ann['iscrowd'])

            if self._task is CocoTask.person_keypoints:
                keypoints = ann['keypoints']
                points = []
                visibility = []
                for x, y, v in take_by(keypoints, 3):
                    points.append(x)
                    points.append(y)
                    visibility.append(v)

                parsed_annotations.append(
                    Points(points,
                           visibility,
                           label=label_id,
                           id=ann_id,
                           attributes=attributes,
                           group=group))

            segmentation = ann['segmentation']
            if segmentation and segmentation != [[]]:
                rle = None

                if isinstance(segmentation, list):
                    if not self._merge_instance_polygons:
                        # polygon - a single object can consist of multiple parts
                        for polygon_points in segmentation:
                            parsed_annotations.append(
                                Polygon(points=polygon_points,
                                        label=label_id,
                                        id=ann_id,
                                        attributes=attributes,
                                        group=group))
                    else:
                        # merge all parts into a single mask RLE
                        rle = self._lazy_merged_mask(segmentation,
                                                     image_info['height'],
                                                     image_info['width'])
                elif isinstance(segmentation['counts'], list):
                    # uncompressed RLE
                    img_h = image_info['height']
                    img_w = image_info['width']
                    mask_h, mask_w = segmentation['size']
                    if img_h == mask_h and img_w == mask_w:
                        rle = self._lazy_merged_mask([segmentation], mask_h,
                                                     mask_w)
                    else:
                        log.warning(
                            "item #%s: mask #%s "
                            "does not match image size: %s vs. %s. "
                            "Skipping this annotation.", image_info['id'],
                            ann_id, (mask_h, mask_w), (img_h, img_w))
                else:
                    # compressed RLE
                    rle = segmentation

                if rle:
                    parsed_annotations.append(
                        RleMask(rle=rle,
                                label=label_id,
                                id=ann_id,
                                attributes=attributes,
                                group=group))
            else:
                x, y, w, h = ann['bbox']
                parsed_annotations.append(
                    Bbox(x,
                         y,
                         w,
                         h,
                         label=label_id,
                         id=ann_id,
                         attributes=attributes,
                         group=group))
        elif self._task is CocoTask.labels:
            label_id = self._get_label_id(ann)
            parsed_annotations.append(
                Label(label=label_id,
                      id=ann_id,
                      attributes=attributes,
                      group=group))
        elif self._task is CocoTask.captions:
            caption = ann['caption']
            parsed_annotations.append(
                Caption(caption, id=ann_id, attributes=attributes,
                        group=group))
        else:
            raise NotImplementedError()

        return parsed_annotations
Ejemplo n.º 8
0
    def test_annotation_comparison(self):
        a = Dataset.from_iterable(
            [
                DatasetItem(
                    id=1,
                    annotations=[
                        Caption('hello'),  # unmatched
                        Caption('world', group=5),
                        Label(2, attributes={
                            'x': 1,
                            'y': '2',
                        }),
                        Bbox(1,
                             2,
                             3,
                             4,
                             label=4,
                             z_order=1,
                             attributes={
                                 'score': 1.0,
                             }),
                        Bbox(5, 6, 7, 8, group=5),
                        Points([1, 2, 2, 0, 1, 1], label=0, z_order=4),
                        Mask(label=3, z_order=2, image=np.ones((2, 3))),
                    ]),
            ],
            categories=['a', 'b', 'c', 'd'])

        b = Dataset.from_iterable(
            [
                DatasetItem(
                    id=1,
                    annotations=[
                        Caption('world', group=5),
                        Label(2, attributes={
                            'x': 1,
                            'y': '2',
                        }),
                        Bbox(1,
                             2,
                             3,
                             4,
                             label=4,
                             z_order=1,
                             attributes={
                                 'score': 1.0,
                             }),
                        Bbox(5, 6, 7, 8, group=5),
                        Bbox(5, 6, 7, 8, group=5),  # unmatched
                        Points([1, 2, 2, 0, 1, 1], label=0, z_order=4),
                        Mask(label=3, z_order=2, image=np.ones((2, 3))),
                    ]),
            ],
            categories=['a', 'b', 'c', 'd'])

        comp = ExactComparator()
        matched, unmatched, _, _, errors = comp.compare_datasets(a, b)

        self.assertEqual(6, len(matched), matched)
        self.assertEqual(2, len(unmatched), unmatched)
        self.assertEqual(0, len(errors), errors)
Ejemplo n.º 9
0
    def test_stats(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.ones((5, 5, 3)), annotations=[
                Caption('hello'),
                Caption('world'),
                Label(2, attributes={ 'x': 1, 'y': '2', }),
                Bbox(1, 2, 2, 2, label=2, attributes={ 'score': 0.5, }),
                Bbox(5, 6, 2, 2, attributes={
                    'x': 1, 'y': '3', 'occluded': True,
                }),
                Points([1, 2, 2, 0, 1, 1], label=0),
                Mask(label=3, image=np.array([
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0],
                ])),
            ]),
            DatasetItem(id=2, image=np.ones((2, 4, 3)), annotations=[
                Label(2, attributes={ 'x': 2, 'y': '2', }),
                Bbox(1, 2, 2, 2, label=3, attributes={ 'score': 0.5, }),
                Bbox(5, 6, 2, 2, attributes={
                    'x': 2, 'y': '3', 'occluded': False,
                }),
            ]),
            DatasetItem(id=3),
            DatasetItem(id='2.2', image=np.ones((2, 4, 3))),
        ], categories=['label_%s' % i for i in range(4)])

        expected = {
            'images count': 4,
            'annotations count': 10,
            'unannotated images count': 2,
            'unannotated images': ['3', '2.2'],
            'annotations by type': {
                'label': { 'count': 2, },
                'polygon': { 'count': 0, },
                'polyline': { 'count': 0, },
                'bbox': { 'count': 4, },
                'mask': { 'count': 1, },
                'points': { 'count': 1, },
                'caption': { 'count': 2, },
                'cuboid_3d': {'count': 0},
            },
            'annotations': {
                'labels': {
                    'count': 6,
                    'distribution': {
                        'label_0': [1, 1/6],
                        'label_1': [0, 0.0],
                        'label_2': [3, 3/6],
                        'label_3': [2, 2/6],
                    },
                    'attributes': {
                        'x': {
                            'count': 2, # annotations with no label are skipped
                            'values count': 2,
                            'values present': ['1', '2'],
                            'distribution': {
                                '1': [1, 1/2],
                                '2': [1, 1/2],
                            },
                        },
                        'y': {
                            'count': 2, # annotations with no label are skipped
                            'values count': 1,
                            'values present': ['2'],
                            'distribution': {
                                '2': [2, 2/2],
                            },
                        },
                        # must not include "special" attributes like "occluded"
                    }
                },
                'segments': {
                    'avg. area': (4 * 2 + 9 * 1) / 3,
                    'area distribution': [
                        {'min': 4.0, 'max': 4.5, 'count': 2, 'percent': 2/3},
                        {'min': 4.5, 'max': 5.0, 'count': 0, 'percent': 0.0},
                        {'min': 5.0, 'max': 5.5, 'count': 0, 'percent': 0.0},
                        {'min': 5.5, 'max': 6.0, 'count': 0, 'percent': 0.0},
                        {'min': 6.0, 'max': 6.5, 'count': 0, 'percent': 0.0},
                        {'min': 6.5, 'max': 7.0, 'count': 0, 'percent': 0.0},
                        {'min': 7.0, 'max': 7.5, 'count': 0, 'percent': 0.0},
                        {'min': 7.5, 'max': 8.0, 'count': 0, 'percent': 0.0},
                        {'min': 8.0, 'max': 8.5, 'count': 0, 'percent': 0.0},
                        {'min': 8.5, 'max': 9.0, 'count': 1, 'percent': 1/3},
                    ],
                    'pixel distribution': {
                        'label_0': [0, 0.0],
                        'label_1': [0, 0.0],
                        'label_2': [4, 4/17],
                        'label_3': [13, 13/17],
                    },
                }
            },
        }

        actual = compute_ann_statistics(dataset)

        self.assertEqual(expected, actual)
Ejemplo n.º 10
0
    def test_can_compare_projects(self): # just a smoke test
        label_categories1 = LabelCategories.from_iterable(['x', 'a', 'b', 'y'])
        mask_categories1 = MaskCategories.generate(len(label_categories1))

        point_categories1 = PointsCategories()
        for index, _ in enumerate(label_categories1.items):
            point_categories1.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        dataset1 = Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=0, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=2, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories1,
            AnnotationType.mask: mask_categories1,
            AnnotationType.points: point_categories1,
        })


        label_categories2 = LabelCategories.from_iterable(['a', 'b', 'x', 'y'])
        mask_categories2 = MaskCategories.generate(len(label_categories2))

        point_categories2 = PointsCategories()
        for index, _ in enumerate(label_categories2.items):
            point_categories2.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        dataset2 = Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=1, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=3, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories2,
            AnnotationType.mask: mask_categories2,
            AnnotationType.points: point_categories2,
        })

        with TestDir() as test_dir:
            with DiffVisualizer(save_dir=test_dir,
                        comparator=DistanceComparator(iou_threshold=0.8),
                    ) as visualizer:
                visualizer.save(dataset1, dataset2)

            self.assertNotEqual(0, os.listdir(osp.join(test_dir)))
Ejemplo n.º 11
0
    def test_dataset(self):
        label_categories = LabelCategories(attributes={'a', 'b', 'score'})
        for i in range(5):
            label_categories.add('cat' + str(i), attributes={'x', 'y'})

        mask_categories = MaskCategories(
            generate_colormap(len(label_categories.items)))

        points_categories = PointsCategories()
        for index, _ in enumerate(label_categories.items):
            points_categories.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        return Dataset.from_iterable(
            [
                DatasetItem(id=100,
                            subset='train',
                            image=np.ones((10, 6, 3)),
                            annotations=[
                                Caption('hello', id=1),
                                Caption('world', id=2, group=5),
                                Label(2, id=3, attributes={
                                    'x': 1,
                                    'y': '2',
                                }),
                                Bbox(1,
                                     2,
                                     3,
                                     4,
                                     label=4,
                                     id=4,
                                     z_order=1,
                                     attributes={
                                         'score': 1.0,
                                     }),
                                Bbox(5,
                                     6,
                                     7,
                                     8,
                                     id=5,
                                     group=5,
                                     attributes={
                                         'a': 1.5,
                                         'b': 'text',
                                     }),
                                Points([1, 2, 2, 0, 1, 1],
                                       label=0,
                                       id=5,
                                       z_order=4,
                                       attributes={
                                           'x': 1,
                                           'y': '2',
                                       }),
                                Mask(label=3,
                                     id=5,
                                     z_order=2,
                                     image=np.ones((2, 3)),
                                     attributes={
                                         'x': 1,
                                         'y': '2',
                                     }),
                            ]),
                DatasetItem(id=21,
                            subset='train',
                            annotations=[
                                Caption('test'),
                                Label(2),
                                Bbox(1, 2, 3, 4, label=5, id=42, group=42)
                            ]),
                DatasetItem(
                    id=2,
                    subset='val',
                    annotations=[
                        PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                        Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                    ]),
                DatasetItem(id=1,
                            subset='test',
                            annotations=[
                                Cuboid3d([1.0, 2.0, 3.0], [2.0, 2.0, 4.0],
                                         [1.0, 3.0, 4.0],
                                         id=6,
                                         label=0,
                                         attributes={'occluded': True},
                                         group=6)
                            ]),
                DatasetItem(
                    id=42, subset='test', attributes={
                        'a1': 5,
                        'a2': '42'
                    }),
                DatasetItem(id=42),
                DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
            ],
            categories={
                AnnotationType.label: label_categories,
                AnnotationType.mask: mask_categories,
                AnnotationType.points: points_categories,
            })