Ejemplo n.º 1
0
    def test_can_save_and_load_with_landmarks(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(
                id='name0_0001',
                subset='test',
                image=np.ones((2, 5, 3)),
                annotations=[
                    Label(0,
                          attributes={'positive_pairs': ['name0/name0_0002']}),
                    Points([0, 4, 3, 3, 2, 2, 1, 0, 3, 0], label=0),
                ]),
            DatasetItem(id='name0_0002',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(0),
                            Points([0, 5, 3, 5, 2, 2, 1, 0, 3, 0], label=0),
                        ]),
        ],
                                               categories=['name0'])

        with TestDir() as test_dir:
            LfwConverter.convert(source_dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'lfw')

            compare_datasets(self, source_dataset, parsed_dataset)
Ejemplo n.º 2
0
    def test_can_import(self):
        expected_dataset = Dataset.from_iterable(
            [
                DatasetItem(id='n000001/0001_01',
                            subset='train',
                            image=np.ones((10, 15, 3)),
                            annotations=[
                                Bbox(2, 2, 1, 2, label=0),
                                Points([
                                    2.787, 2.898, 2.965, 2.79, 2.8, 2.456,
                                    2.81, 2.32, 2.89, 2.3
                                ],
                                       label=0),
                            ]),
                DatasetItem(id='n000002/0001_01',
                            subset='train',
                            image=np.ones((10, 15, 3)),
                            annotations=[
                                Bbox(2, 4, 2, 2, label=1),
                                Points([
                                    2.3, 4.9, 2.9, 4.93, 2.62, 4.745, 2.54,
                                    4.45, 2.76, 4.43
                                ],
                                       label=1)
                            ]),
                DatasetItem(id='n000002/0002_01',
                            subset='train',
                            image=np.ones((10, 15, 3)),
                            annotations=[
                                Bbox(1, 3, 1, 1, label=1),
                                Points([
                                    1.2, 3.8, 1.8, 3.82, 1.51, 3.634, 1.43,
                                    3.34, 1.65, 3.32
                                ],
                                       label=1)
                            ]),
                DatasetItem(
                    id='n000003/0003_01',
                    subset='test',
                    image=np.ones((10, 15, 3)),
                    annotations=[
                        Bbox(1, 1, 1, 1, label=2),
                        Points(
                            [0.2, 2.8, 0.8, 2.9, 0.5, 2.6, 0.4, 2.3, 0.6, 2.3],
                            label=2)
                    ])
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable([('n000001', 'Karl'),
                                               ('n000002', 'Jay'),
                                               ('n000003', 'Pol')]),
            })

        dataset = Dataset.import_from(DUMMY_DATASET_DIR, 'vgg_face2')

        compare_datasets(self, expected_dataset, dataset)
Ejemplo n.º 3
0
    def test_can_save_and_load_image_with_arbitrary_extension(self):
        dataset = Dataset.from_iterable([
            DatasetItem('no_label/q/1',
                        image=Image(path='q/1.JPEG', data=np.zeros(
                            (4, 3, 3)))),
            DatasetItem('a/b/c/2',
                        image=Image(path='a/b/c/2.bmp',
                                    data=np.zeros((3, 4, 3))),
                        annotations=[
                            Bbox(0, 2, 4, 2, label=0),
                            Points([
                                4.23, 4.32, 5.34, 4.45, 3.54, 3.56, 4.52, 3.51,
                                4.78, 3.34
                            ],
                                   label=0),
                        ]),
        ],
                                        categories=['a'])

        with TestDir() as test_dir:
            VggFace2Converter.convert(dataset, test_dir, save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            compare_datasets(self,
                             dataset,
                             parsed_dataset,
                             require_images=True)
Ejemplo n.º 4
0
    def test_can_import_specific_subset(self):
        expected_dataset = Dataset.from_iterable(
            [
                DatasetItem(
                    id='n000003/0003_01',
                    subset='test',
                    image=np.ones((10, 15, 3)),
                    annotations=[
                        Bbox(1, 1, 1, 1, label=2),
                        Points(
                            [0.2, 2.8, 0.8, 2.9, 0.5, 2.6, 0.4, 2.3, 0.6, 2.3],
                            label=2)
                    ])
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable([('n000001', 'Karl'),
                                               ('n000002', 'Jay'),
                                               ('n000003', 'Pol')]),
            })

        specific_subset = osp.join(DUMMY_DATASET_DIR, 'bb_landmark',
                                   'loose_bb_test.csv')
        dataset = Dataset.import_from(specific_subset, 'vgg_face2')

        compare_datasets(self, expected_dataset, dataset)
Ejemplo n.º 5
0
    def test_shapes_to_boxes(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.zeros((5, 5, 3)),
                annotations=[
                    Mask(np.array([
                            [0, 0, 1, 1, 1],
                            [0, 0, 0, 0, 1],
                            [1, 0, 0, 0, 1],
                            [1, 0, 0, 0, 0],
                            [1, 1, 1, 0, 0]],
                        ), id=1),
                    Polygon([1, 1, 4, 1, 4, 4, 1, 4], id=2),
                    PolyLine([1, 1, 2, 1, 2, 2, 1, 2], id=3),
                    Points([2, 2, 4, 2, 4, 4, 2, 4], id=4),
                ]
            ),
        ])

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.zeros((5, 5, 3)),
                annotations=[
                    Bbox(0, 0, 4, 4, id=1),
                    Bbox(1, 1, 3, 3, id=2),
                    Bbox(1, 1, 1, 1, id=3),
                    Bbox(2, 2, 2, 2, id=4),
                ]
            ),
        ])

        actual = transforms.ShapesToBoxes(source_dataset)
        compare_datasets(self, target_dataset, actual)
Ejemplo n.º 6
0
    def test_can_load_image(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='img0', subset='train',
                image=np.ones((8, 8, 3)),
                annotations=[
                    Bbox(0, 2, 4, 2, label=0, z_order=1,
                        attributes={
                            'occluded': True,
                            'a1': True, 'a2': 'v3', 'a3': '0003', 'a4': 2.4,
                        }),
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8],
                        attributes={'occluded': False}),
                ], attributes={'frame': 0}),
            DatasetItem(id='img1', subset='train',
                image=np.ones((10, 10, 3)),
                annotations=[
                    Polygon([1, 2, 3, 4, 6, 5], z_order=1,
                        attributes={'occluded': False}),
                    Points([1, 2, 3, 4, 5, 6], label=1, z_order=2,
                        attributes={'occluded': False}),
                ], attributes={'frame': 1}),
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable([
                ['label1', '', {'a1', 'a2', 'a3', 'a4'}],
                ['label2'],
            ])
        })

        parsed_dataset = Dataset.import_from(DUMMY_IMAGE_DATASET_DIR, 'cvat')

        compare_datasets(self, expected_dataset, parsed_dataset)
Ejemplo n.º 7
0
    def test_can_save_dataset_with_no_labels(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='no_label/1',
                        image=np.ones((8, 8, 3)),
                        annotations=[
                            Bbox(0, 2, 4, 2),
                            Points([
                                4.23, 4.32, 5.34, 4.45, 3.54, 3.56, 4.52, 3.51,
                                4.78, 3.34
                            ]),
                        ]),
            DatasetItem(id='no_label/2',
                        image=np.ones((8, 8, 3)),
                        annotations=[
                            Bbox(2, 2, 4, 2),
                        ]),
        ],
                                               categories=[])

        with TestDir() as test_dir:
            VggFace2Converter.convert(source_dataset,
                                      test_dir,
                                      save_images=False)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            compare_datasets(self, source_dataset, parsed_dataset)
    def test_can_import_dataset_wo_numpy_files(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='000000001', image=np.ones((5, 5, 3)),
                annotations=[
                    Points([620.0, 394.0, 616.0, 269.0, 573.0, 185.0, 647.0,
                            188.0, 661.0, 221.0, 656.0, 231.0, 610.0, 187.0,
                            647.0, 176.0, 637.02, 189.818, 695.98, 108.182,
                            606.0, 217.0, 553.0, 161.0, 601.0, 167.0, 692.0,
                            185.0, 693.0, 240.0, 688.0, 313.0],
                        [1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                        attributes={'center': [594.0, 257.0], 'scale': 3.021},
                        label=0, group=1)
                ]
            ),
            DatasetItem(id='000000002', image=np.ones((5, 5, 3)),
                annotations=[
                    Points([650.0, 424.0, 646.0, 309.0, 603.0, 215.0, 677.0,
                            218.0, 691.0, 251.0, 686.0, 261.0, 640.0, 217.0,
                            677.0, 216.0, 667.02, 219.818, 725.98, 138.182,
                            636.0, 247.0, 583.0, 191.0, 631.0, 197.0, 722.0,
                            215.0, 723.0, 270.0, 718.0, 343.0],
                        [1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                        attributes={'center': [624.0, 287.0], 'scale': 3.7},
                        label=0, group=1)
                ]
            ),
            DatasetItem(id='000000003', image=np.ones((5, 5, 3)),
                annotations=[
                    Points([590.0, 364.0, 586.0, 239.0, 533.0, 155.0, 617.0,
                            158.0, 631.0, 191.0, 626.0, 201.0, 580.0, 157.0,
                            617.0, 146.0, 607.02, 159.818, 645.98, 68.182,
                            576.0, 187.0, 532.0, 131.0, 571.0, 137.0, 662.0,
                            155.0, 663.0, 210.0, 658.0, 283.0],
                        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1],
                        attributes={'center': [564.0, 227.0], 'scale': 3.2},
                        label=0, group=1)
                ]
            )
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable(['human']),
            AnnotationType.points: PointsCategories.from_iterable(
                [(0, MPII_POINTS_LABELS, MPII_POINTS_JOINTS)])
        })

        dataset = Dataset.import_from(DUMMY_DATASET_DIR_WO_NUMPY_FILES, 'mpii_json')

        compare_datasets(self, expected_dataset, dataset, require_images=True)
Ejemplo n.º 9
0
    def test_can_resize(self):
        small_dataset = Dataset.from_iterable([
            DatasetItem(id=i, image=np.ones((4, 4)) * i, annotations=[
                Label(1),
                Bbox(1, 1, 2, 2, label=2),
                Polygon([1, 1, 1, 2, 2, 2, 2, 1], label=1),
                PolyLine([1, 1, 1, 2, 2, 2, 2, 1], label=2),
                Points([1, 1, 1, 2, 2, 2, 2, 1], label=2),
                Mask(np.array([
                    [0, 0, 1, 1],
                    [1, 0, 0, 1],
                    [0, 1, 1, 0],
                    [1, 1, 0, 0],
                ]))
            ]) for i in range(3)
        ], categories=['a', 'b', 'c'])

        big_dataset = Dataset.from_iterable([
            DatasetItem(id=i, image=np.ones((8, 8)) * i, annotations=[
                Label(1),
                Bbox(2, 2, 4, 4, label=2),
                Polygon([2, 2, 2, 4, 4, 4, 4, 2], label=1),
                PolyLine([2, 2, 2, 4, 4, 4, 4, 2], label=2),
                Points([2, 2, 2, 4, 4, 4, 4, 2], label=2),
                Mask(np.array([
                    [0, 0, 0, 0, 1, 1, 1, 1],
                    [0, 0, 0, 0, 1, 1, 1, 1],
                    [1, 1, 0, 0, 0, 0, 1, 1],
                    [1, 1, 0, 0, 0, 0, 1, 1],
                    [0, 0, 1, 1, 1, 1, 0, 0],
                    [0, 0, 1, 1, 1, 1, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                    [1, 1, 1, 1, 0, 0, 0, 0],
                ]))
            ]) for i in range(3)
        ], categories=['a', 'b', 'c'])

        with self.subTest('upscale'):
            actual = transforms.ResizeTransform(small_dataset, width=8, height=8)
            compare_datasets(self, big_dataset, actual)

        with self.subTest('downscale'):
            actual = transforms.ResizeTransform(big_dataset, width=4, height=4)
            compare_datasets(self, small_dataset, actual)
Ejemplo n.º 10
0
    def test_can_match_points(self):
        item1 = DatasetItem(id=1,
                            annotations=[
                                Points([1, 2, 2, 0, 1, 1], label=0),
                                Points([3, 5, 5, 7, 5, 3], label=0),
                            ])
        item2 = DatasetItem(id=2,
                            annotations=[
                                Points([1.5, 2, 2, 0.5, 1, 1.5], label=0),
                                Points([5, 7, 7, 7, 7, 5], label=0),
                            ])

        result = DistanceComparator().match_points(item1, item2)

        matches, mismatches, a_greater, b_greater = result
        self.assertEqual(1, len(a_greater))
        self.assertEqual(1, len(b_greater))
        self.assertEqual(1, len(matches))
        self.assertEqual(0, len(mismatches))
Ejemplo n.º 11
0
    def test_can_import_without_people_file(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='name0_0001',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(0,
                                  attributes={
                                      'negative_pairs':
                                      ['name1/name1_0001', 'name1/name1_0002']
                                  }),
                            Points([0, 4, 3, 3, 2, 2, 1, 0, 3, 0], label=0),
                        ]),
            DatasetItem(id='name1_0001',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(1,
                                  attributes={
                                      'positive_pairs': ['name1/name1_0002'],
                                  }),
                            Points([1, 6, 4, 6, 3, 3, 2, 1, 4, 1], label=1),
                        ]),
            DatasetItem(id='name1_0002',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(1),
                            Points([0, 5, 3, 5, 2, 2, 1, 0, 3, 0], label=1),
                        ]),
        ],
                                                 categories=['name0', 'name1'])

        with TestDir() as test_dir:
            dataset_path = osp.join(test_dir, 'dataset')
            shutil.copytree(DUMMY_DATASET_DIR, dataset_path)
            os.remove(
                osp.join(dataset_path, 'test', 'annotations', 'people.txt'))

            dataset = Dataset.import_from(DUMMY_DATASET_DIR, 'lfw')

            compare_datasets(self, expected_dataset, dataset)
Ejemplo n.º 12
0
    def test_can_save_and_load_with_meta_file(self):
        source_dataset = Dataset.from_iterable(
            [
                DatasetItem(id='class_0/1',
                            subset='train',
                            image=np.ones((8, 8, 3)),
                            annotations=[
                                Bbox(0, 2, 4, 2, label=0),
                                Points([
                                    3.2, 3.12, 4.11, 3.2, 2.11, 2.5, 3.5, 2.11,
                                    3.8, 2.13
                                ],
                                       label=0),
                            ]),
                DatasetItem(id='class_1/2',
                            subset='train',
                            image=np.ones((10, 10, 3)),
                            annotations=[
                                Points([
                                    4.23, 4.32, 5.34, 4.45, 3.54, 3.56, 4.52,
                                    3.51, 4.78, 3.34
                                ],
                                       label=1),
                            ])
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable([('class_%s' % i)
                                               for i in range(5)]),
            })

        with TestDir() as test_dir:
            VggFace2Converter.convert(source_dataset,
                                      test_dir,
                                      save_images=True,
                                      save_dataset_meta=True)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            self.assertTrue(osp.isfile(osp.join(test_dir,
                                                'dataset_meta.json')))
            compare_datasets(self, source_dataset, parsed_dataset)
Ejemplo n.º 13
0
    def test_can_import(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='name0_0001',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(0,
                                  attributes={
                                      'negative_pairs':
                                      ['name1/name1_0001', 'name1/name1_0002']
                                  }),
                            Points([0, 4, 3, 3, 2, 2, 1, 0, 3, 0], label=0),
                        ]),
            DatasetItem(id='name1_0001',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(1,
                                  attributes={
                                      'positive_pairs': ['name1/name1_0002'],
                                  }),
                            Points([1, 6, 4, 6, 3, 3, 2, 1, 4, 1], label=1),
                        ]),
            DatasetItem(id='name1_0002',
                        subset='test',
                        image=np.ones((2, 5, 3)),
                        annotations=[
                            Label(1),
                            Points([0, 5, 3, 5, 2, 2, 1, 0, 3, 0], label=1),
                        ]),
        ],
                                                 categories=['name0', 'name1'])

        dataset = Dataset.import_from(DUMMY_DATASET_DIR, 'lfw')

        compare_datasets(self, expected_dataset, dataset)
Ejemplo n.º 14
0
    def test_can_save_dataset_with_wrong_number_of_points(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='no_label/1',
                        image=np.ones((8, 8, 3)),
                        annotations=[
                            Points([4.23, 4.32, 5.34, 3.51, 4.78, 3.34]),
                        ]),
        ],
                                               categories=[])

        target_dataset = Dataset.from_iterable([
            DatasetItem(
                id='no_label/1', image=np.ones((8, 8, 3)), annotations=[]),
        ],
                                               categories=[])

        with TestDir() as test_dir:
            VggFace2Converter.convert(source_dataset,
                                      test_dir,
                                      save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            compare_datasets(self, target_dataset, parsed_dataset)
Ejemplo n.º 15
0
    def test_can_save_dataset_with_cyrillic_and_spaces_in_filename(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id='a/кириллица с пробелом',
                        image=np.ones((8, 8, 3)),
                        annotations=[
                            Points([
                                4.23, 4.32, 5.34, 4.45, 3.54, 3.56, 4.52, 3.51,
                                4.78, 3.34
                            ],
                                   label=0),
                        ]),
        ],
                                               categories=['a'])

        with TestDir() as test_dir:
            VggFace2Converter.convert(source_dataset,
                                      test_dir,
                                      save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            compare_datasets(self,
                             source_dataset,
                             parsed_dataset,
                             require_images=True)
Ejemplo n.º 16
0
    def _load_items(self, root_dir):
        items = {}

        image_dir = osp.join(root_dir, CelebaPath.IMAGES_DIR)

        if osp.isdir(image_dir):
            images = {
                osp.splitext(osp.relpath(p, image_dir))[0].replace('\\', '/'):
                p
                for p in find_images(image_dir, recursive=True)
            }
        else:
            images = {}

        label_categories = self._categories[AnnotationType.label]

        labels_path = osp.join(root_dir, CelebaPath.LABELS_FILE)
        if not osp.isfile(labels_path):
            raise DatasetImportError("File '%s': was not found" % labels_path)

        with open(labels_path, encoding='utf-8') as f:
            for line in f:
                item_id, item_ann = self.split_annotation(line)
                label_ids = [int(id) for id in item_ann]
                anno = []
                for label in label_ids:
                    while len(label_categories) <= label:
                        label_categories.add('class-%d' %
                                             len(label_categories))
                    anno.append(Label(label))

                items[item_id] = DatasetItem(id=item_id,
                                             image=images.get(item_id),
                                             annotations=anno)

        landmark_path = osp.join(root_dir, CelebaPath.LANDMARKS_FILE)
        if osp.isfile(landmark_path):
            with open(landmark_path, encoding='utf-8') as f:
                landmarks_number = int(f.readline().strip())

                point_cat = PointsCategories()
                for i, point_name in enumerate(f.readline().strip().split()):
                    point_cat.add(i, [point_name])
                self._categories[AnnotationType.points] = point_cat

                counter = 0
                for counter, line in enumerate(f):
                    item_id, item_ann = self.split_annotation(line)
                    landmarks = [float(id) for id in item_ann]

                    if len(landmarks) != len(point_cat):
                        raise DatasetImportError("File '%s', line %s: "
                            "points do not match the header of this file" % \
                            (landmark_path, line))

                    if item_id not in items:
                        raise DatasetImportError("File '%s', line %s: "
                            "for this item are not label in %s " % \
                            (landmark_path, line, CelebaPath.LABELS_FILE))

                    anno = items[item_id].annotations
                    label = anno[0].label
                    anno.append(Points(landmarks, label=label))

                if landmarks_number - 1 != counter:
                    raise DatasetImportError(
                        "File '%s': the number of "
                        "landmarks does not match the specified number "
                        "at the beginning of the file " % landmark_path)

        bbox_path = osp.join(root_dir, CelebaPath.BBOXES_FILE)
        if osp.isfile(bbox_path):
            with open(bbox_path, encoding='utf-8') as f:
                bboxes_number = int(f.readline().strip())

                if f.readline().strip() != CelebaPath.BBOXES_HEADER:
                    raise DatasetImportError("File '%s': the header "
                        "does not match the expected format '%s'" % \
                        (bbox_path, CelebaPath.BBOXES_HEADER))

                counter = 0
                for counter, line in enumerate(f):
                    item_id, item_ann = self.split_annotation(line)
                    bbox = [float(id) for id in item_ann]

                    if item_id not in items:
                        raise DatasetImportError("File '%s', line %s: "
                            "for this item are not label in %s " % \
                            (bbox_path, line, CelebaPath.LABELS_FILE))

                    anno = items[item_id].annotations
                    label = anno[0].label
                    anno.append(
                        Bbox(bbox[0], bbox[1], bbox[2], bbox[3], label=label))

                if bboxes_number - 1 != counter:
                    raise DatasetImportError(
                        "File '%s': the number of bounding "
                        "boxes does not match the specified number "
                        "at the beginning of the file " % bbox_path)

        attr_path = osp.join(root_dir, CelebaPath.ATTRS_FILE)
        if osp.isfile(attr_path):
            with open(attr_path, encoding='utf-8') as f:
                attr_number = int(f.readline().strip())
                attr_names = f.readline().split()

                counter = 0
                for counter, line in enumerate(f):
                    item_id, item_ann = self.split_annotation(line)
                    if len(attr_names) != len(item_ann):
                        raise DatasetImportError(
                            "File '%s', line %s: "
                            "the number of attributes "
                            "in the line does not match the number at the "
                            "beginning of the file " % (attr_path, line))

                    attrs = {
                        name: 0 < int(ann)
                        for name, ann in zip(attr_names, item_ann)
                    }

                    if item_id not in items:
                        items[item_id] = DatasetItem(id=item_id,
                                                     image=images.get(item_id))

                    items[item_id].attributes = attrs

                if attr_number - 1 != counter:
                    raise DatasetImportError(
                        "File %s: the number of items "
                        "with attributes does not match the specified number "
                        "at the beginning of the file " % attr_path)

        subset_path = osp.join(root_dir, CelebaPath.SUBSETS_FILE)
        if osp.isfile(subset_path):
            with open(subset_path, encoding='utf-8') as f:
                for line in f:
                    item_id, item_ann = self.split_annotation(line)
                    subset_id = item_ann[0]
                    subset = CelebaPath.SUBSETS[subset_id]

                    if item_id not in items:
                        items[item_id] = DatasetItem(id=item_id,
                                                     image=images.get(item_id))

                    items[item_id].subset = subset

                    if 'default' in self._subsets:
                        self._subsets.pop()
                    self._subsets.append(subset)

        return items
Ejemplo n.º 17
0
    def _parse_shape_ann(cls, ann, categories):
        ann_id = ann.get('id', 0)
        ann_type = ann['type']

        attributes = ann.get('attributes') or {}
        if 'occluded' in categories[AnnotationType.label].attributes:
            attributes['occluded'] = ann.get('occluded', False)
        if 'outside' in ann:
            attributes['outside'] = ann['outside']
        if 'keyframe' in ann:
            attributes['keyframe'] = ann['keyframe']
        if 'track_id' in ann:
            attributes['track_id'] = ann['track_id']

        group = ann.get('group')

        label = ann.get('label')
        label_id = categories[AnnotationType.label].find(label)[0]

        z_order = ann.get('z_order', 0)
        points = ann.get('points', [])

        if ann_type == 'polyline':
            return PolyLine(points,
                            label=label_id,
                            z_order=z_order,
                            id=ann_id,
                            attributes=attributes,
                            group=group)

        elif ann_type == 'polygon':
            return Polygon(points,
                           label=label_id,
                           z_order=z_order,
                           id=ann_id,
                           attributes=attributes,
                           group=group)

        elif ann_type == 'points':
            return Points(points,
                          label=label_id,
                          z_order=z_order,
                          id=ann_id,
                          attributes=attributes,
                          group=group)

        elif ann_type == 'box':
            x, y = points[0], points[1]
            w, h = points[2] - x, points[3] - y
            return Bbox(x,
                        y,
                        w,
                        h,
                        label=label_id,
                        z_order=z_order,
                        id=ann_id,
                        attributes=attributes,
                        group=group)

        else:
            raise NotImplementedError("Unknown annotation type '%s'" %
                                      ann_type)
Ejemplo n.º 18
0
    def _load_annotations(self, ann, image_info=None, parsed_annotations=None):
        if parsed_annotations is None:
            parsed_annotations = []

        ann_id = ann['id']

        attributes = ann.get('attributes', {})
        if 'score' in ann:
            attributes['score'] = ann['score']

        group = ann_id  # make sure all tasks' annotations are merged

        if self._task is CocoTask.instances or \
                self._task is CocoTask.person_keypoints or \
                self._task is CocoTask.stuff:
            label_id = self._get_label_id(ann)

            attributes['is_crowd'] = bool(ann['iscrowd'])

            if self._task is CocoTask.person_keypoints:
                keypoints = ann['keypoints']
                points = []
                visibility = []
                for x, y, v in take_by(keypoints, 3):
                    points.append(x)
                    points.append(y)
                    visibility.append(v)

                parsed_annotations.append(
                    Points(points,
                           visibility,
                           label=label_id,
                           id=ann_id,
                           attributes=attributes,
                           group=group))

            segmentation = ann['segmentation']
            if segmentation and segmentation != [[]]:
                rle = None

                if isinstance(segmentation, list):
                    if not self._merge_instance_polygons:
                        # polygon - a single object can consist of multiple parts
                        for polygon_points in segmentation:
                            parsed_annotations.append(
                                Polygon(points=polygon_points,
                                        label=label_id,
                                        id=ann_id,
                                        attributes=attributes,
                                        group=group))
                    else:
                        # merge all parts into a single mask RLE
                        rle = self._lazy_merged_mask(segmentation,
                                                     image_info['height'],
                                                     image_info['width'])
                elif isinstance(segmentation['counts'], list):
                    # uncompressed RLE
                    img_h = image_info['height']
                    img_w = image_info['width']
                    mask_h, mask_w = segmentation['size']
                    if img_h == mask_h and img_w == mask_w:
                        rle = self._lazy_merged_mask([segmentation], mask_h,
                                                     mask_w)
                    else:
                        log.warning(
                            "item #%s: mask #%s "
                            "does not match image size: %s vs. %s. "
                            "Skipping this annotation.", image_info['id'],
                            ann_id, (mask_h, mask_w), (img_h, img_w))
                else:
                    # compressed RLE
                    rle = segmentation

                if rle:
                    parsed_annotations.append(
                        RleMask(rle=rle,
                                label=label_id,
                                id=ann_id,
                                attributes=attributes,
                                group=group))
            else:
                x, y, w, h = ann['bbox']
                parsed_annotations.append(
                    Bbox(x,
                         y,
                         w,
                         h,
                         label=label_id,
                         id=ann_id,
                         attributes=attributes,
                         group=group))
        elif self._task is CocoTask.labels:
            label_id = self._get_label_id(ann)
            parsed_annotations.append(
                Label(label=label_id,
                      id=ann_id,
                      attributes=attributes,
                      group=group))
        elif self._task is CocoTask.captions:
            caption = ann['caption']
            parsed_annotations.append(
                Caption(caption, id=ann_id, attributes=attributes,
                        group=group))
        else:
            raise NotImplementedError()

        return parsed_annotations
Ejemplo n.º 19
0
    def _load_annotations(item):
        parsed = item['annotations']
        loaded = []

        for ann in parsed:
            ann_id = ann.get('id')
            ann_type = AnnotationType[ann['type']]
            attributes = ann.get('attributes')
            group = ann.get('group')

            label_id = ann.get('label_id')
            z_order = ann.get('z_order')
            points = ann.get('points')

            if ann_type == AnnotationType.label:
                loaded.append(
                    Label(label=label_id,
                          id=ann_id,
                          attributes=attributes,
                          group=group))

            elif ann_type == AnnotationType.mask:
                rle = ann['rle']
                rle['counts'] = rle['counts'].encode('ascii')
                loaded.append(
                    RleMask(rle=rle,
                            label=label_id,
                            id=ann_id,
                            attributes=attributes,
                            group=group,
                            z_order=z_order))

            elif ann_type == AnnotationType.polyline:
                loaded.append(
                    PolyLine(points,
                             label=label_id,
                             id=ann_id,
                             attributes=attributes,
                             group=group,
                             z_order=z_order))

            elif ann_type == AnnotationType.polygon:
                loaded.append(
                    Polygon(points,
                            label=label_id,
                            id=ann_id,
                            attributes=attributes,
                            group=group,
                            z_order=z_order))

            elif ann_type == AnnotationType.bbox:
                x, y, w, h = ann['bbox']
                loaded.append(
                    Bbox(x,
                         y,
                         w,
                         h,
                         label=label_id,
                         id=ann_id,
                         attributes=attributes,
                         group=group,
                         z_order=z_order))

            elif ann_type == AnnotationType.points:
                loaded.append(
                    Points(points,
                           label=label_id,
                           id=ann_id,
                           attributes=attributes,
                           group=group,
                           z_order=z_order))

            elif ann_type == AnnotationType.caption:
                caption = ann.get('caption')
                loaded.append(
                    Caption(caption,
                            id=ann_id,
                            attributes=attributes,
                            group=group))

            elif ann_type == AnnotationType.cuboid_3d:
                loaded.append(
                    Cuboid3d(ann.get('position'),
                             ann.get('rotation'),
                             ann.get('scale'),
                             label=label_id,
                             id=ann_id,
                             attributes=attributes,
                             group=group))

            else:
                raise NotImplementedError()

        return loaded
Ejemplo n.º 20
0
    def test_can_match_shapes(self):
        source0 = Dataset.from_iterable([
            DatasetItem(1, annotations=[
                # unique
                Bbox(1, 2, 3, 4, label=1),

                # common
                Mask(label=2, z_order=2, image=np.array([
                    [0, 0, 0, 0],
                    [0, 0, 0, 0],
                    [1, 1, 1, 0],
                    [1, 1, 1, 0],
                ])),
                Polygon([1, 0, 3, 2, 1, 2]),

                # an instance with keypoints
                Bbox(4, 5, 2, 4, label=2, z_order=1, group=1),
                Points([5, 6], label=0, group=1),
                Points([6, 8], label=1, group=1),

                PolyLine([1, 1, 2, 1, 3, 1]),
            ]),
        ], categories=['a', 'b', 'c'])

        source1 = Dataset.from_iterable([
            DatasetItem(1, annotations=[
                # common
                Mask(label=2, image=np.array([
                    [0, 0, 0, 0],
                    [0, 1, 1, 1],
                    [0, 1, 1, 1],
                    [0, 1, 1, 1],
                ])),
                Polygon([0, 2, 2, 0, 2, 1]),

                # an instance with keypoints
                Bbox(4, 4, 2, 5, label=2, z_order=1, group=2),
                Points([5.5, 6.5], label=0, group=2),
                Points([6, 8], label=1, group=2),

                PolyLine([1, 1.5, 2, 1.5]),
            ]),
        ], categories=['a', 'b', 'c'])

        source2 = Dataset.from_iterable([
            DatasetItem(1, annotations=[
                # common
                Mask(label=2, z_order=3, image=np.array([
                    [0, 0, 1, 1],
                    [0, 1, 1, 1],
                    [1, 1, 1, 1],
                    [1, 1, 1, 0],
                ])),
                Polygon([3, 1, 2, 2, 0, 1]),

                # an instance with keypoints, one is missing
                Bbox(3, 6, 2, 3, label=2, z_order=4, group=3),
                Points([4.5, 5.5], label=0, group=3),

                PolyLine([1, 1.25, 3, 1, 4, 2]),
            ]),
        ], categories=['a', 'b', 'c'])

        expected = Dataset.from_iterable([
            DatasetItem(1, annotations=[
                # unique
                Bbox(1, 2, 3, 4, label=1),

                # common
                # nearest to mean bbox
                Mask(label=2, z_order=3, image=np.array([
                    [0, 0, 0, 0],
                    [0, 1, 1, 1],
                    [0, 1, 1, 1],
                    [0, 1, 1, 1],
                ])),
                Polygon([1, 0, 3, 2, 1, 2]),

                # an instance with keypoints
                Bbox(4, 5, 2, 4, label=2, z_order=4, group=1),
                Points([5, 6], label=0, group=1),
                Points([6, 8], label=1, group=1),

                PolyLine([1, 1.25, 3, 1, 4, 2]),
            ]),
        ], categories=['a', 'b', 'c'])

        merger = IntersectMerge(conf={'quorum': 1, 'pairwise_dist': 0.1})
        merged = merger([source0, source1, source2])

        compare_datasets(self, expected, merged, ignored_attrs={'score'})
        self.assertEqual(
            [
                NoMatchingAnnError(item_id=('1', DEFAULT_SUBSET_NAME),
                    sources={2}, ann=source0.get('1').annotations[5]),
                NoMatchingAnnError(item_id=('1', DEFAULT_SUBSET_NAME),
                    sources={1, 2}, ann=source0.get('1').annotations[0]),
            ],
            sorted((e for e in merger.errors
                    if isinstance(e, NoMatchingAnnError)),
                key=lambda e: len(e.sources))
        )
Ejemplo n.º 21
0
    def test_annotation_comparison(self):
        a = Dataset.from_iterable(
            [
                DatasetItem(
                    id=1,
                    annotations=[
                        Caption('hello'),  # unmatched
                        Caption('world', group=5),
                        Label(2, attributes={
                            'x': 1,
                            'y': '2',
                        }),
                        Bbox(1,
                             2,
                             3,
                             4,
                             label=4,
                             z_order=1,
                             attributes={
                                 'score': 1.0,
                             }),
                        Bbox(5, 6, 7, 8, group=5),
                        Points([1, 2, 2, 0, 1, 1], label=0, z_order=4),
                        Mask(label=3, z_order=2, image=np.ones((2, 3))),
                    ]),
            ],
            categories=['a', 'b', 'c', 'd'])

        b = Dataset.from_iterable(
            [
                DatasetItem(
                    id=1,
                    annotations=[
                        Caption('world', group=5),
                        Label(2, attributes={
                            'x': 1,
                            'y': '2',
                        }),
                        Bbox(1,
                             2,
                             3,
                             4,
                             label=4,
                             z_order=1,
                             attributes={
                                 'score': 1.0,
                             }),
                        Bbox(5, 6, 7, 8, group=5),
                        Bbox(5, 6, 7, 8, group=5),  # unmatched
                        Points([1, 2, 2, 0, 1, 1], label=0, z_order=4),
                        Mask(label=3, z_order=2, image=np.ones((2, 3))),
                    ]),
            ],
            categories=['a', 'b', 'c', 'd'])

        comp = ExactComparator()
        matched, unmatched, _, _, errors = comp.compare_datasets(a, b)

        self.assertEqual(6, len(matched), matched)
        self.assertEqual(2, len(unmatched), unmatched)
        self.assertEqual(0, len(errors), errors)
Ejemplo n.º 22
0
    def test_can_load_video(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='frame_000010', subset='annotations',
                image=255 * np.ones((20, 25, 3)),
                annotations=[
                    Bbox(3, 4, 7, 1, label=2,
                        id=0,
                        attributes={
                            'occluded': True,
                            'outside': False, 'keyframe': True,
                            'track_id': 0
                        }),
                    Points([21.95, 8.00, 2.55, 15.09, 2.23, 3.16],
                        label=0,
                        id=1,
                        attributes={
                            'occluded': False,
                            'outside': False, 'keyframe': True,
                            'track_id': 1, 'hgl': 'hgkf',
                        }),
                ], attributes={'frame': 10}),
            DatasetItem(id='frame_000013', subset='annotations',
                image=255 * np.ones((20, 25, 3)),
                annotations=[
                    Bbox(7, 6, 7, 2, label=2,
                        id=0,
                        attributes={
                            'occluded': False,
                            'outside': True, 'keyframe': True,
                            'track_id': 0
                        }),
                    Points([21.95, 8.00, 9.55, 15.09, 5.23, 1.16],
                        label=0,
                        id=1,
                        attributes={
                            'occluded': False,
                            'outside': True, 'keyframe': True,
                            'track_id': 1, 'hgl': 'jk',
                        }),
                    PolyLine([7.85, 13.88, 3.50, 6.67, 15.90, 2.00, 13.31, 7.21],
                        label=2,
                        id=2,
                        attributes={
                            'occluded': False,
                            'outside': False, 'keyframe': True,
                            'track_id': 2,
                        }),
                ], attributes={'frame': 13}),
            DatasetItem(id='frame_000016', subset='annotations',
                image=Image(path='frame_0000016.png', size=(20, 25)),
                annotations=[
                    Bbox(8, 7, 6, 10, label=2,
                        id=0,
                        attributes={
                            'occluded': False,
                            'outside': True, 'keyframe': True,
                            'track_id': 0
                        }),
                    PolyLine([7.85, 13.88, 3.50, 6.67, 15.90, 2.00, 13.31, 7.21],
                        label=2,
                        id=2,
                        attributes={
                            'occluded': False,
                            'outside': True, 'keyframe': True,
                            'track_id': 2,
                        }),
                ], attributes={'frame': 16}),
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable([
                ['klhg', '', {'hgl'}],
                ['z U k'],
                ['II']
            ]),
        })

        parsed_dataset = Dataset.import_from(DUMMY_VIDEO_DATASET_DIR, 'cvat')

        compare_datasets(self, expected_dataset, parsed_dataset)
Ejemplo n.º 23
0
    def test_stats(self):
        dataset = Dataset.from_iterable([
            DatasetItem(id=1, image=np.ones((5, 5, 3)), annotations=[
                Caption('hello'),
                Caption('world'),
                Label(2, attributes={ 'x': 1, 'y': '2', }),
                Bbox(1, 2, 2, 2, label=2, attributes={ 'score': 0.5, }),
                Bbox(5, 6, 2, 2, attributes={
                    'x': 1, 'y': '3', 'occluded': True,
                }),
                Points([1, 2, 2, 0, 1, 1], label=0),
                Mask(label=3, image=np.array([
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0],
                ])),
            ]),
            DatasetItem(id=2, image=np.ones((2, 4, 3)), annotations=[
                Label(2, attributes={ 'x': 2, 'y': '2', }),
                Bbox(1, 2, 2, 2, label=3, attributes={ 'score': 0.5, }),
                Bbox(5, 6, 2, 2, attributes={
                    'x': 2, 'y': '3', 'occluded': False,
                }),
            ]),
            DatasetItem(id=3),
            DatasetItem(id='2.2', image=np.ones((2, 4, 3))),
        ], categories=['label_%s' % i for i in range(4)])

        expected = {
            'images count': 4,
            'annotations count': 10,
            'unannotated images count': 2,
            'unannotated images': ['3', '2.2'],
            'annotations by type': {
                'label': { 'count': 2, },
                'polygon': { 'count': 0, },
                'polyline': { 'count': 0, },
                'bbox': { 'count': 4, },
                'mask': { 'count': 1, },
                'points': { 'count': 1, },
                'caption': { 'count': 2, },
                'cuboid_3d': {'count': 0},
            },
            'annotations': {
                'labels': {
                    'count': 6,
                    'distribution': {
                        'label_0': [1, 1/6],
                        'label_1': [0, 0.0],
                        'label_2': [3, 3/6],
                        'label_3': [2, 2/6],
                    },
                    'attributes': {
                        'x': {
                            'count': 2, # annotations with no label are skipped
                            'values count': 2,
                            'values present': ['1', '2'],
                            'distribution': {
                                '1': [1, 1/2],
                                '2': [1, 1/2],
                            },
                        },
                        'y': {
                            'count': 2, # annotations with no label are skipped
                            'values count': 1,
                            'values present': ['2'],
                            'distribution': {
                                '2': [2, 2/2],
                            },
                        },
                        # must not include "special" attributes like "occluded"
                    }
                },
                'segments': {
                    'avg. area': (4 * 2 + 9 * 1) / 3,
                    'area distribution': [
                        {'min': 4.0, 'max': 4.5, 'count': 2, 'percent': 2/3},
                        {'min': 4.5, 'max': 5.0, 'count': 0, 'percent': 0.0},
                        {'min': 5.0, 'max': 5.5, 'count': 0, 'percent': 0.0},
                        {'min': 5.5, 'max': 6.0, 'count': 0, 'percent': 0.0},
                        {'min': 6.0, 'max': 6.5, 'count': 0, 'percent': 0.0},
                        {'min': 6.5, 'max': 7.0, 'count': 0, 'percent': 0.0},
                        {'min': 7.0, 'max': 7.5, 'count': 0, 'percent': 0.0},
                        {'min': 7.5, 'max': 8.0, 'count': 0, 'percent': 0.0},
                        {'min': 8.0, 'max': 8.5, 'count': 0, 'percent': 0.0},
                        {'min': 8.5, 'max': 9.0, 'count': 1, 'percent': 1/3},
                    ],
                    'pixel distribution': {
                        'label_0': [0, 0.0],
                        'label_1': [0, 0.0],
                        'label_2': [4, 4/17],
                        'label_3': [13, 13/17],
                    },
                }
            },
        }

        actual = compute_ann_statistics(dataset)

        self.assertEqual(expected, actual)
    def test_can_import(self):
        expected_dataset = Dataset.from_iterable(
            [
                DatasetItem(
                    id='000001',
                    subset='train',
                    image=np.ones((3, 4, 3)),
                    annotations=[
                        Label(12),
                        Points([69, 109, 106, 113, 77, 142, 73, 152, 108, 154],
                               label=12)
                    ],
                    attributes={
                        '5_o_Clock_Shadow': False,
                        'Arched_Eyebrows': True,
                        'Attractive': True,
                        'Bags_Under_Eyes': False,
                        'Bald': False,
                        'Bangs': False,
                        'Big_Lips': False,
                        'Big_Nose': False
                    }),
                DatasetItem(
                    id='000002',
                    subset='train',
                    image=np.ones((3, 4, 3)),
                    annotations=[
                        Label(5),
                        Points([69, 110, 107, 112, 81, 135, 70, 151, 108, 153],
                               label=5)
                    ]),
                DatasetItem(
                    id='000003',
                    subset='val',
                    image=np.ones((3, 4, 3)),
                    annotations=[
                        Label(2),
                        Points([76, 112, 104, 106, 108, 128, 74, 156, 98, 158],
                               label=2)
                    ],
                    attributes={
                        '5_o_Clock_Shadow': False,
                        'Arched_Eyebrows': False,
                        'Attractive': False,
                        'Bags_Under_Eyes': True,
                        'Bald': False,
                        'Bangs': False,
                        'Big_Lips': False,
                        'Big_Nose': True
                    }),
                DatasetItem(
                    id='000004',
                    subset='test',
                    image=np.ones((3, 4, 3)),
                    annotations=[
                        Label(10),
                        Points(
                            [72, 113, 108, 108, 101, 138, 71, 155, 101, 151],
                            label=10)
                    ]),
                DatasetItem(
                    id='000005',
                    subset='test',
                    image=np.ones((3, 4, 3)),
                    annotations=[
                        Label(7),
                        Points([66, 114, 112, 112, 86, 119, 71, 147, 104, 150],
                               label=7)
                    ])
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable(f'class-{i}' for i in range(13)),
                AnnotationType.points:
                PointsCategories.from_iterable([(0, ['lefteye_x']),
                                                (1, ['lefteye_y']),
                                                (2, ['righteye_x']),
                                                (3, ['righteye_y']),
                                                (4, ['nose_x']),
                                                (5, ['nose_y']),
                                                (6, ['leftmouth_x']),
                                                (7, ['leftmouth_y']),
                                                (8, ['rightmouth_x']),
                                                (9, ['rightmouth_y'])])
            })

        dataset = Dataset.import_from(DUMMY_ALIGN_DATASET_DIR, 'align_celeba')

        compare_datasets(self, expected_dataset, dataset, require_images=True)
Ejemplo n.º 25
0
    def _load_items(self, subset):
        def _get_label(path):
            label_name = path.split('/')[0]
            label = None
            if label_name != VggFace2Path.IMAGES_DIR_NO_LABEL:
                label = \
                    self._categories[AnnotationType.label].find(label_name)[0]
            return label

        items = {}

        image_dir = osp.join(self._dataset_dir, subset)
        if osp.isdir(image_dir):
            images = {
                osp.splitext(osp.relpath(p, image_dir))[0].replace('\\', '/'):
                p
                for p in find_images(image_dir, recursive=True)
            }
        else:
            images = {}

        landmarks_path = osp.join(
            self._dataset_dir, VggFace2Path.ANNOTATION_DIR,
            VggFace2Path.LANDMARKS_FILE + subset + '.csv')
        if osp.isfile(landmarks_path):
            with open(landmarks_path, encoding='utf-8') as content:
                landmarks_table = list(csv.DictReader(content))
            for row in landmarks_table:
                item_id = row['NAME_ID']
                label = None
                if '/' in item_id:
                    label = _get_label(item_id)

                if item_id not in items:
                    items[item_id] = DatasetItem(id=item_id,
                                                 subset=subset,
                                                 image=images.get(
                                                     row['NAME_ID']))

                annotations = items[item_id].annotations
                if [a for a in annotations if a.type == AnnotationType.points]:
                    raise Exception("Item %s: an image can have only one "
                                    "set of landmarks" % item_id)

                if len([p
                        for p in row if row[p] == '']) == 0 and len(row) == 11:
                    annotations.append(
                        Points([float(row[p]) for p in row if p != 'NAME_ID'],
                               label=label))
                elif label is not None:
                    annotations.append(Label(label=label))

        bboxes_path = osp.join(self._dataset_dir, VggFace2Path.ANNOTATION_DIR,
                               VggFace2Path.BBOXES_FILE + subset + '.csv')
        if osp.isfile(bboxes_path):
            with open(bboxes_path, encoding='utf-8') as content:
                bboxes_table = list(csv.DictReader(content))
            for row in bboxes_table:
                item_id = row['NAME_ID']
                label = None
                if '/' in item_id:
                    label = _get_label(item_id)

                if item_id not in items:
                    items[item_id] = DatasetItem(id=item_id,
                                                 subset=subset,
                                                 image=images.get(
                                                     row['NAME_ID']))

                annotations = items[item_id].annotations
                if [a for a in annotations if a.type == AnnotationType.bbox]:
                    raise Exception("Item %s: an image can have only one "
                                    "bbox" % item_id)

                if len([p
                        for p in row if row[p] == '']) == 0 and len(row) == 5:
                    annotations.append(
                        Bbox(float(row['X']),
                             float(row['Y']),
                             float(row['W']),
                             float(row['H']),
                             label=label))
        return items
    def test_can_import_dataset_witn_numpy_files(self):
        expected_dataset = Dataset.from_iterable([
            DatasetItem(id='000000001', image=np.ones((5, 5, 3)),
                annotations=[
                    Points([620.0, 394.0, 616.0, 269.0, 573.0, 185.0, 647.0,
                            188.0, 661.0, 221.0, 656.0, 231.0, 610.0, 187.0,
                            647.0, 176.0, 637.02, 189.818, 695.98, 108.182,
                            606.0, 217.0, 553.0, 161.0, 601.0, 167.0, 692.0,
                            185.0, 693.0, 240.0, 688.0, 313.0],
                        [1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                        attributes={'center': [594.0, 257.0], 'scale': 3.021},
                        label=0, group=1),
                    Bbox(615, 218.65, 288.4, 286.95, label=0, group=1)
                ]
            ),
            DatasetItem(id='000000002', image=np.ones((5, 5, 3)),
                annotations=[
                    Points([650.0, 424.0, 646.0, 309.0, 603.0, 215.0, 677.0,
                            218.0, 691.0, 251.0, 686.0, 261.0, 640.0, 217.0,
                            677.0, 216.0, 667.02, 219.818, 725.98, 138.182,
                            636.0, 247.0, 583.0, 191.0, 631.0, 197.0, 722.0,
                            215.0, 723.0, 270.0, 718.0, 343.0],
                        [1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                        attributes={'center': [624.0, 287.0], 'scale': 3.7},
                        label=0, group=1),
                    Bbox(101.1, 33.3, 113.9, 81.4, label=0, group=1)
                ]
            ),
            DatasetItem(id='000000003', image=np.ones((5, 5, 3)),
                annotations=[
                    Points([590.0, 364.0, 586.0, 239.0, 533.0, 155.0, 617.0,
                            158.0, 631.0, 191.0, 626.0, 201.0, 580.0, 157.0,
                            617.0, 146.0, 607.02, 159.818, 645.98, 68.182,
                            576.0, 187.0, 532.0, 131.0, 571.0, 137.0, 662.0,
                            155.0, 663.0, 210.0, 658.0, 283.0],
                        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1],
                        attributes={'center': [564.0, 227.0], 'scale': 3.2},
                        label=0, group=1),
                    Bbox(313.3, 512.43, 220.7, 121.57, label=0, group=1),

                    Points([490.0, 264.0, 486.0, 139.0, 433.0, 55.0, 517.0,
                            58.0, 531.0, 91.0, 526.0, 101.0, 480.0, 57.0,
                            517.0, 46.0, 507.02, 59.818, 545.98, 8.182,
                            476.0, 87.0, 432.0, 31.0, 471.0, 37.0, 562.0,
                            55.0, 563.0, 110.0, 558.0, 183.0],
                        [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1],
                        attributes={'center': [464.0, 127.0], 'scale': 2.65},
                        label=0, group=2),

                    Points([690.0, 464.0, 686.0, 339.0, 633.0, 255.0, 717.0,
                            258.0, 731.0, 291.0, 726.0, 301.0, 680.0, 257.0,
                            717.0, 246.0, 707.02, 259.818, 745.98, 168.182,
                            676.0, 287.0, 632.0, 231.0, 671.0, 237.0, 762.0,
                            255.0, 763.0, 310.0, 758.0, 383.0],
                        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1],
                        attributes={'center': [664.0, 327.0], 'scale': 3.9},
                        label=0, group=3)
                ]
            )
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable(['human']),
            AnnotationType.points: PointsCategories.from_iterable(
                [(0, MPII_POINTS_LABELS, MPII_POINTS_JOINTS)])
        })

        dataset = Dataset.import_from(DUMMY_DATASET_DIR_WITH_NUMPY_FILES, 'mpii_json')

        compare_datasets(self, expected_dataset, dataset, require_images=True)
Ejemplo n.º 27
0
    def test_can_save_and_load(self):
        source_dataset = Dataset.from_iterable(
            [
                DatasetItem(id='label_0/1',
                            subset='train',
                            image=np.ones((8, 8, 3)),
                            annotations=[
                                Bbox(0, 2, 4, 2, label=0),
                                Points([
                                    3.2, 3.12, 4.11, 3.2, 2.11, 2.5, 3.5, 2.11,
                                    3.8, 2.13
                                ],
                                       label=0),
                            ]),
                DatasetItem(id='label_1/2',
                            subset='train',
                            image=np.ones((10, 10, 3)),
                            annotations=[
                                Points([
                                    4.23, 4.32, 5.34, 4.45, 3.54, 3.56, 4.52,
                                    3.51, 4.78, 3.34
                                ],
                                       label=1),
                            ]),
                DatasetItem(id='label_2/3',
                            subset='train',
                            image=np.ones((8, 8, 3)),
                            annotations=[Label(2)]),
                DatasetItem(id='label_3/4',
                            subset='train',
                            image=np.ones((10, 10, 3)),
                            annotations=[
                                Bbox(0, 2, 4, 2, label=3),
                                Points([
                                    3.2, 3.12, 4.11, 3.2, 2.11, 2.5, 3.5, 2.11,
                                    3.8, 2.13
                                ],
                                       label=3),
                            ]),
                DatasetItem(id='no_label/a/5',
                            subset='train',
                            image=np.ones((8, 8, 3)),
                            annotations=[
                                Bbox(2, 2, 2, 2),
                            ]),
                DatasetItem(
                    id='no_label/label_0',
                    subset='train',
                    image=np.ones((8, 8, 3)),
                ),
            ],
            categories={
                AnnotationType.label:
                LabelCategories.from_iterable([('label_%s' % i, 'class_%s' % i)
                                               for i in range(5)]),
            })

        with TestDir() as test_dir:
            VggFace2Converter.convert(source_dataset,
                                      test_dir,
                                      save_images=True)
            parsed_dataset = Dataset.import_from(test_dir, 'vgg_face2')

            compare_datasets(self, source_dataset, parsed_dataset)
Ejemplo n.º 28
0
    def _load_items(self, path):
        items = {}

        root_dir = osp.dirname(path)

        data = spio.loadmat(path, struct_as_record=False,
                            squeeze_me=True).get('RELEASE', {})
        data = getattr(data, 'annolist', [])

        for item in data:
            image = ''
            annotations = []
            group_num = 1

            image = getattr(item, 'image', '')
            if isinstance(image, spio.matlab.mio5_params.mat_struct):
                image = getattr(image, 'name', '')

            anno_values = getattr(item, 'annorect', [])
            if isinstance(anno_values, spio.matlab.mio5_params.mat_struct):
                anno_values = [anno_values]

            for val in anno_values:
                x1 = None
                x2 = None
                y1 = None
                y2 = None
                keypoints = {}
                is_visible = {}
                attributes = {}

                scale = getattr(val, 'scale', 0.0)
                if isinstance(scale, float):
                    attributes['scale'] = scale

                objpos = getattr(val, 'objpos', None)
                if isinstance(objpos, spio.matlab.mio5_params.mat_struct):
                    attributes['center'] = [
                        getattr(objpos, 'x', 0),
                        getattr(objpos, 'y', 0)
                    ]

                annopoints = getattr(val, 'annopoints', None)
                if isinstance(annopoints, spio.matlab.mio5_params.mat_struct) and \
                        not isinstance(getattr(annopoints, 'point'),
                            spio.matlab.mio5_params.mat_struct):
                    for point in getattr(annopoints, 'point'):
                        point_id = getattr(point, 'id')
                        keypoints[point_id] = [
                            getattr(point, 'x', 0),
                            getattr(point, 'y', 0)
                        ]
                        is_visible[point_id] = getattr(point, 'is_visible', 1)
                        if not isinstance(is_visible[point_id], int):
                            is_visible[point_id] = 1

                x1 = getattr(val, 'x1', None)
                if not isinstance(x1, (int, float)):
                    x1 = None

                x2 = getattr(val, 'x2', None)
                if not isinstance(x2, (int, float)):
                    x2 = None

                y1 = getattr(val, 'y1', None)
                if not isinstance(y1, (int, float)):
                    y1 = None

                y2 = getattr(val, 'y2', None)
                if not isinstance(y2, (int, float)):
                    y2 = None

                if keypoints:
                    points = [0] * (2 * len(keypoints))
                    vis = [0] * len(keypoints)

                    keypoints = sorted(keypoints.items(), key=lambda x: x[0])
                    for i, (key, point) in enumerate(keypoints):
                        points[2 * i] = point[0]
                        points[2 * i + 1] = point[1]
                        vis[i] = is_visible.get(key, 1)

                    annotations.append(
                        Points(points,
                               vis,
                               label=0,
                               group=group_num,
                               attributes=attributes))

                if x1 is not None and x2 is not None \
                        and y1 is not None and y2 is not None:

                    annotations.append(
                        Bbox(x1,
                             y1,
                             x2 - x1,
                             y2 - y1,
                             label=0,
                             group=group_num))

                group_num += 1

            item_id = osp.splitext(image)[0]

            items[item_id] = DatasetItem(
                id=item_id,
                subset=self._subset,
                image=Image(path=osp.join(root_dir, image)),
                annotations=annotations)

        return items
Ejemplo n.º 29
0
    def test_can_save_and_load(self):
        src_label_cat = LabelCategories(attributes={'occluded', 'common'})
        for i in range(10):
            src_label_cat.add(str(i))
        src_label_cat.items[2].attributes.update(['a1', 'a2', 'empty'])

        source_dataset = Dataset.from_iterable([
            DatasetItem(id=0, subset='s1', image=np.zeros((5, 10, 3)),
                annotations=[
                    Polygon([0, 0, 4, 0, 4, 4],
                        label=1, group=4,
                        attributes={ 'occluded': True, 'common': 't' }),
                    Points([1, 1, 3, 2, 2, 3],
                        label=2,
                        attributes={ 'a1': 'x', 'a2': 42, 'empty': '',
                            'unknown': 'bar' }),
                    Label(1),
                    Label(2, attributes={ 'a1': 'y', 'a2': 44 }),
                ]
            ),
            DatasetItem(id=1, subset='s1',
                annotations=[
                    PolyLine([0, 0, 4, 0, 4, 4],
                        label=3, id=4, group=4),
                    Bbox(5, 0, 1, 9,
                        label=3, id=4, group=4),
                ]
            ),

            DatasetItem(id=2, subset='s2', image=np.ones((5, 10, 3)),
                annotations=[
                    Polygon([0, 0, 4, 0, 4, 4], z_order=1,
                        label=3, group=4,
                        attributes={ 'occluded': False }),
                    PolyLine([5, 0, 9, 0, 5, 5]), # will be skipped as no label
                ]
            ),

            DatasetItem(id=3, subset='s3', image=Image(
                path='3.jpg', size=(2, 4))),
        ], categories={ AnnotationType.label: src_label_cat })

        target_label_cat = LabelCategories(
            attributes={'occluded'}) # unable to represent a common attribute
        for i in range(10):
            target_label_cat.add(str(i), attributes={'common'})
        target_label_cat.items[2].attributes.update(['a1', 'a2', 'empty', 'common'])
        target_dataset = Dataset.from_iterable([
            DatasetItem(id=0, subset='s1', image=np.zeros((5, 10, 3)),
                annotations=[
                    Polygon([0, 0, 4, 0, 4, 4],
                        label=1, group=4,
                        attributes={ 'occluded': True, 'common': 't' }),
                    Points([1, 1, 3, 2, 2, 3],
                        label=2,
                        attributes={ 'occluded': False, 'empty': '',
                            'a1': 'x', 'a2': '42' }),
                    Label(1),
                    Label(2, attributes={ 'a1': 'y', 'a2': '44' }),
                ], attributes={'frame': 0}
            ),
            DatasetItem(id=1, subset='s1',
                annotations=[
                    PolyLine([0, 0, 4, 0, 4, 4],
                        label=3, group=4,
                        attributes={ 'occluded': False }),
                    Bbox(5, 0, 1, 9,
                        label=3, group=4,
                        attributes={ 'occluded': False }),
                ], attributes={'frame': 1}
            ),

            DatasetItem(id=2, subset='s2', image=np.ones((5, 10, 3)),
                annotations=[
                    Polygon([0, 0, 4, 0, 4, 4], z_order=1,
                        label=3, group=4,
                        attributes={ 'occluded': False }),
                ], attributes={'frame': 0}
            ),

            DatasetItem(id=3, subset='s3', image=Image(
                    path='3.jpg', size=(2, 4)),
                attributes={'frame': 0}),
        ], categories={ AnnotationType.label: target_label_cat })

        with TestDir() as test_dir:
            self._test_save_and_load(source_dataset,
                partial(CvatConverter.convert, save_images=True), test_dir,
                target_dataset=target_dataset)
Ejemplo n.º 30
0
    def test_can_compare_projects(self): # just a smoke test
        label_categories1 = LabelCategories.from_iterable(['x', 'a', 'b', 'y'])
        mask_categories1 = MaskCategories.generate(len(label_categories1))

        point_categories1 = PointsCategories()
        for index, _ in enumerate(label_categories1.items):
            point_categories1.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        dataset1 = Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=0, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=2, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories1,
            AnnotationType.mask: mask_categories1,
            AnnotationType.points: point_categories1,
        })


        label_categories2 = LabelCategories.from_iterable(['a', 'b', 'x', 'y'])
        mask_categories2 = MaskCategories.generate(len(label_categories2))

        point_categories2 = PointsCategories()
        for index, _ in enumerate(label_categories2.items):
            point_categories2.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        dataset2 = Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=1, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=3, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories2,
            AnnotationType.mask: mask_categories2,
            AnnotationType.points: point_categories2,
        })

        with TestDir() as test_dir:
            with DiffVisualizer(save_dir=test_dir,
                        comparator=DistanceComparator(iou_threshold=0.8),
                    ) as visualizer:
                visualizer.save(dataset1, dataset2)

            self.assertNotEqual(0, os.listdir(osp.join(test_dir)))