Ejemplo n.º 1
0
def update_news():
    recent_news = get_news()
    authors = [news['author'] for news in recent_news]
    titles = s.query(News.title).filter(News.author.in_(authors)).subquery()
    existing_news = s.query(News).filter(News.title.in_(titles)).all()
    for news in recent_news:
        if not existing_news or news not in existing_news:
            fill(news)
    redirect("/news")
Ejemplo n.º 2
0
def update_news():
    recent_news = get_news()
    authors = [news['author'] for news in recent_news]
    titles = s.query(News.title).filter(News.author.in_(authors)).subquery()
    existing_news = s.query(News).filter(News.title.in_(titles)).all()
    titles_bd = [i.title for i in existing_news]
    authors_bd = [i.author for i in existing_news]
    for news in recent_news:
        if not existing_news or (news['title'] not in titles_bd
                                 and news["author"] not in authors_bd):
            fill(news)
    redirect("/news")
Ejemplo n.º 3
0
def get_categories(model, x_data, row_data):
    pred = model.predict(x_data)
    proba = model.predict_proba(x_data)
    cnt = [0, 0]
    for i, p in enumerate(pred):
        indices = np.where(p)
        clear = True
        for e in proba[i]:
            if 0.050 < e < 0.800:
                clear = False
                break
        cats = [0, 0, 0, 0, 0]
        for idx in indices[0]:
            cats[int(idx)] = 1
        fill(row_data[i], cats[0], cats[1], cats[2], cats[3], cats[4], int(clear))
        cnt[int(clear)] += 1
    print("Reviews successfully classified with {} clear and {} confusing reviews\n".format(cnt[1], cnt[0]))
Ejemplo n.º 4
0
def collect():
    url = request.forms.get("url")
    for r in get_reviews(url):
        fill(r)
    redirect("/reviews")