Ejemplo n.º 1
0
 def get_aggregated_experiment_statistics(self,
                                          type='timer',
                                          name='run',
                                          dbms_filter=[],
                                          warmup=0,
                                          cooldown=0,
                                          factor_base='Mean',
                                          query_aggregate='Mean',
                                          total_aggregate='Mean'):
     if query_aggregate is not None:
         df = self.get_aggregated_query_statistics(type, name, dbms_filter,
                                                   warmup, cooldown,
                                                   factor_base,
                                                   query_aggregate)
         if df.empty:
             return df
         df_stat = evaluator.addStatistics(df,
                                           drop_nan=False,
                                           drop_measures=True)
         return pd.DataFrame(df_stat[total_aggregate]).rename(
             columns={total_aggregate: "total_" + type + "_" + name})
     else:
         df_measures = {}
         for numQuery in self.get_experiment_queries_successful()[0]:
             df1, df2 = self.get_measures_and_statistics(
                 numQuery + 1,
                 type=type,
                 name=name,
                 dbms_filter=dbms_filter,
                 warmup=warmup,
                 cooldown=cooldown,
                 factor_base=factor_base)
             df_measures[numQuery + 1] = (df1.copy())
         #print(df_measures)
         n = len(df1.columns)
         #print(n)
         df_result = pd.DataFrame()
         for i in range(0, n):
             df_tmp = pd.DataFrame()
             for q, df in df_measures.items():
                 #print(df[i])
                 df_tmp.insert(loc=len(df_tmp.columns),
                               column=q,
                               value=df[i])
             #print(df_tmp)
             df_tmp = evaluator.dfSubRows(df_tmp, dbms_filter)
             df_stat = evaluator.addStatistics(df_tmp,
                                               drop_nan=False,
                                               drop_measures=True)
             #print(df_stat[total_aggregate])
             df_result.insert(loc=len(df_result.columns),
                              column=i,
                              value=df_stat[total_aggregate])
         #print(df_result)
         return df_result
Ejemplo n.º 2
0
 def get_measures_and_statistics(self,
                                 numQuery,
                                 type='timer',
                                 name='run',
                                 dbms_filter=[],
                                 warmup=0,
                                 cooldown=0,
                                 factor_base='Mean'):
     if type == 'timer':
         df = self.get_timer(numQuery,
                             name,
                             warmup=warmup,
                             cooldown=cooldown)
         df = evaluator.dfSubRows(df, dbms_filter)
         df_stat = evaluator.addStatistics(df,
                                           drop_nan=False,
                                           drop_measures=True)
     elif type == 'monitoring':
         df = self.get_hardware_metrics(numQuery,
                                        name,
                                        warmup=warmup,
                                        cooldown=cooldown)
         df = evaluator.dfSubRows(df, dbms_filter)
         df = self.dfCleanMonitoring(df)  # remove extension interval
         #df = df_cleaned
         #df_cleaned = self.dfCleanMonitoring(df.copy())
         #df_stat = evaluator.addStatistics(df_cleaned, drop_nan=False, drop_measures=True)
         df_stat = evaluator.addStatistics(df,
                                           drop_nan=False,
                                           drop_measures=True)
     elif type == 'latency':
         df = self.get_lat(numQuery, name, warmup=warmup, cooldown=cooldown)
         df = evaluator.dfSubRows(df, dbms_filter)
         df_stat = evaluator.addStatistics(df,
                                           drop_nan=False,
                                           drop_measures=True)
     elif type == 'throughput':
         df = self.get_tp(numQuery, name, warmup=warmup, cooldown=cooldown)
         df = evaluator.dfSubRows(df, dbms_filter)
         df_stat = evaluator.addStatistics(df,
                                           drop_nan=False,
                                           drop_measures=True)
     else:
         print("Unknown type")
         return None, None
     if df_stat.empty:
         print("No data")
         return df, df_stat
     if len(factor_base) > 0:
         df_stat = evaluator.addFactor(df_stat, factor_base)
     return df, df_stat
Ejemplo n.º 3
0
 def get_aggregated_by_connection(self,
                                  dataframe,
                                  list_connections=[],
                                  connection_aggregate='Mean'):
     df_stats = pd.DataFrame()
     if len(list_connections) > 0:
         for i, l2 in list_connections.items():
             df = pd.DataFrame()
             for c in l2:
                 df.insert(len(df.columns),
                           column=c,
                           value=dataframe.loc[c])
             df = evaluator.addStatistics(df)
             df_stats.insert(len(df_stats.columns),
                             column=i,
                             value=df[connection_aggregate])
     else:
         df_stats = evaluator.addStatistics(dataframe.T, drop_measures=True)
         df_stats = pd.DataFrame(df_stats[connection_aggregate])
     return df_stats.T
Ejemplo n.º 4
0
 def plot_measures(self, dataframe, connection_colors):
     print(evaluator.addStatistics(dataframe)
           ['Mean'])  # little affected by window
     print(evaluator.addStatistics(dataframe)
           ['Median'])  # much affected by window
     print(evaluator.addStatistics(
         dataframe, drop_measures=True))  # variation and max drops
     df_nums = df_get_number_of_measures(dataframe)
     # total CPU in unit CPU-seconds
     print(dataframe.mean(axis=1) * df_nums)
     fig = go.Figure()
     for i in range(len(dataframe.index)):
         t = fig.add_trace(
             go.Scatter(x=dataframe.T.index,
                        y=dataframe.iloc[i],
                        name=dataframe.index[i],
                        line=dict(
                            color=connection_colors[dataframe.index[i]],
                            width=1)))
     n = fig.update_layout(yaxis=dict(range=[0, dataframe.max().max()]))
     fig.show()